C. difficile hypervirulence genes identified

Sep 25, 2009

Five genetic regions have been identified that are unique to the most virulent strain of Clostridium difficile (C. difficile), the hospital superbug. Researchers writing in BioMed Central's open access journal Genome Biology studied the genome of the bacterium, looking for genes relating to motility, antibiotic resistance and toxicity.

Brendan Wren from the London School of Hygiene & Tropical Medicine worked with a team of researchers at The Wellcome Trust Sanger Institute to compare the genomes of three strains of the , the hypervirulent '027' strain, an historic, non-epidemic 027 strain and one less related and also non-epidemic '630' strain.

He said, "C. difficile is the most frequent cause of nosocomial diarrhoea worldwide. In the past five years a new group of highly virulent C. difficile strains has emerged to cause outbreaks of increased severity in North America and Europe. Several studies have shown that patients infected with these '027' strains have more severe diarrhoea, higher mortality and more recurrences. This study provides genetic markers for the identification of 027 strains and offers a unique opportunity to explain their emergence".

The researchers found that the 027 strains had considerable genetic differences compared to the non-epidemic 630 strain, which may relate to the observed phenotypic difference in virulence. Additionally, five genetic regions appear to have accumulated over the last 20 years in the modern day epidemic 027 strain, compared to its historic counterpart. According to Wren, "The observed gene differences between these strains might individually or collectively explain why modern 027 strains are more likely to be epidemic and could explain the higher case-fatality ratio and persistence associated with infection by these strains".

More information: Comparative and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium; Richard A Stabler, Miao He, Lisa Dawson, Melissa Martin, Esmeralda Valiente, Craig Corton, Trevor D Lawley, Mohammed Sebaihia, Michael A Quail, Graham Rose, Dale N Gerding, Maryse Gibert, Michel R Popoff, Julian Parkhill, Gordon Dougan and Brendan W Wren; (in press); http://genomebiology.com/

Source: BioMed Central (news : web)

Explore further: Heaven scent: Finding may help restore fragrance to roses

Related Stories

The balance shifts

May 27, 2008

The risk of contracting a Clostridium difficile infection following operations for which a "prophylactic" antibiotic is given to prevent infection is 21 times greater now than it was just a decade ago, according to researchers ...

Understanding why C. difficile causes disease -- it's Hungry

May 24, 2007

Researchers studying the genetics behind why C. difficile causes disease have come to a simple conclusion -- the bacteria do it because they are starving. That just might help them find a new treatment for what can sometimes ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.