Researchers discover a new antibacterial lead

September 27, 2009 by Laura Thompson
Researchers discover a new antibacterial lead
A promising discovery by McMaster University researchers has revealed an ideal starting point to develop new interventions for resistant infections.

(PhysOrg.com) -- Antibiotic resistance has been a significant problem for hospitals and health-care facilities for more than a decade. But despite the need for new treatment options, there have been only two new classes of antibiotics developed in the last 40 years.

Now a promising discovery by McMaster University researchers has revealed an ideal starting point to develop new interventions for resistant infections.

Eric Brown, a professor and chair of the Department of Biochemistry and Biomedical Sciences, and a team of researchers from the Michael G. DeGroote Institute for Infectious Disease Research have identified a novel that targets drug-resistant bacteria in a different way from existing antibiotics. The discovery could lead to new treatments to overcome in certain types of microorganisms.

The findings were published September 27 in the science research journal Nature Chemical Biology.

"Everyone reads the headlines about drug-resistant bugs, it's a big problem," said Brown, who holds the Canada Research Chair in Antimicrobial Research. "Really what we're trying to do is understand whether or not there are new ways to tackle this problem."

The research team, which included biochemists and chemists from McMaster University, used high-throughput screening to uncover the new class of chemical. The approach allows scientists to look for small molecules that kill bacteria as well as examine the molecular mechanisms and pathways they exploit.

Existing antibiotics destroy bacteria by blocking production of its cell wall, DNA or protein. The new McMaster-discovered compound, MAC13243, is directed at blocking a particular step in the development of the bacteria's cell surface, which until now has not been recognized as a target for .

"We're excited about finding a new probe of a relatively uncharted part of bacterial physiology," Brown said. "It's a new way of thinking about the problem. Who knows, could this chemical become a drug? Anything's possible. But at the very least we've advanced the field and created some tools that people can use now to try to better understand this pathway."

Source: McMaster University (news : web)

Explore further: Researcher studies drug-resistant bacteria in environment

Related Stories

Researcher studies drug-resistant bacteria in environment

March 19, 2008

Water is essential to life, but the water we drink to stay alive could also be making us sick. Lesley Warren, associate professor in the School of Geography & Earth Sciences, is studying the interaction between water, rocks ...

New antibiotic beats superbugs at their own game

July 3, 2008

The problem with antibiotics is that, eventually, bacteria outsmart them and become resistant. But by targeting the gene that confers such resistance, a new drug may be able to finally outwit them. Rockefeller University ...

Nanotechnology used to probe effectiveness of antibiotics

February 4, 2009

A group of researchers led by scientists from the London Centre for Nanotechnology, in collaboration with a University of Queensland researcher, have discovered a way of using tiny nano-probes to help understand how an antibiotic ...

'Surprising link' leads toward a new antibiotic

May 28, 2009

(PhysOrg.com) -- As the best drugs become increasingly resistant to superbugs, McMaster University researchers have discovered a completely different way of looking for a new antibiotic.

Recommended for you

New method developed for producing some metals

August 25, 2016

The MIT researchers were trying to develop a new battery, but it didn't work out that way. Instead, thanks to an unexpected finding in their lab tests, what they discovered was a whole new way of producing the metal antimony—and ...

Force triggers gene expression by stretching chromatin

August 26, 2016

How genes in our DNA are expressed into traits within a cell is a complicated mystery with many players, the main suspects being chemical. However, a new study by University of Illinois researchers and collaborators in China ...

New electrical energy storage material shows its power

August 24, 2016

A powerful new material developed by Northwestern University chemist William Dichtel and his research team could one day speed up the charging process of electric cars and help increase their driving range.

Bio-inspired tire design: Where the rubber meets the road

August 24, 2016

The fascination with the ability of geckos to scamper up smooth walls and hang upside down from improbable surfaces has entranced scientists at least as far back as Aristotle, who noted the reptile's remarkable feats in his ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.