Launch of the first standard graphical notation for biology

August 11, 2009

Researchers at the European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI) and their colleagues in 30 labs worldwide have released a new set of standards for graphically representing biological information - the biology equivalent of the circuit diagram in electronics. This visual language should make it easier to exchange complex information, so that models are accurate, efficient and readily understandable. The new standard, called the Systems Biology Graphical Notation (SBGN), is published today in Nature Biotechnology.

Researchers use standardised visual languages to communicate complex information in a way that it is unambiguous and easy to understand. Such standard graphical representations are common to many scientific fields.. But biology still lacks a standardised notation that describes all biological interactions, pathways and networks, even though the discipline is dominated by graphical information.

The SBGN project was launched in 2005 as a united effort to specifically develop a new graphical standard for molecular and systems biology applications. The project was initiated by Hiroaki Kitano (Systems Biology Institute, Tokyo, Japan) and coordinated by Nicolas Le Novčre (EMBL-EBI, Hinxton, UK) and Michael Hucka (California Institute of Technology, Pasadena, USA). The team comprises biochemists, modellers and computer scientists who have developed the SBGN in collaboration with the research community.

Le Novčre said: "In the genomics era, especially since the emergence of high-throughput technologies, there have been massive increases in the amount of biological data. We believe that the SBGN will make it easier for researchers to understand each other's models and to share this data more effectively. This will benefit systems biologists working on a variety of biochemical processes, including gene regulation, metabolism and cellular signalling".

To ensure that this new visual language does not become too vast and complicated, the researchers decided to define three separate types of diagram that complement each other, describing molecular processes, relationships between entities and links among biochemical activities. This simplicity, combined with the extensive involvement of the community of researchers that will use SBGN, should ensure that the notation is rapidly adopted and widely used.

Source: European Molecular Biology Laboratory (news : web)

Explore further: Public collections of DNA and RNA sequence reach 100 gigabases

Related Stories

NIAID unveils new research project

July 12, 2006

U.S. government scientists have unveiled a project aimed at better understanding interactions between infectious organisms and human or animal cells.

Minimum information standards -- all for 1 and 1 for all

August 26, 2007

Three papers published by EMBL scientists and their collaborators will make it much easier to share and compare information from large-scale proteomics data. The papers are published in Nature Biotechnology on 8th and 26th ...

A one-stop shop for minimal information standards

August 8, 2008

More than 20 grass-roots standardisation groups, led by scientists at the European Bioinformatics Institute (EMBL-EBI) and the Centre for Ecology & Hydrology (CEH), have combined forces to form the "Minimum Information about ...

Rewrite the textbooks: Transcription is bidirectional

January 25, 2009

Genes that contain instructions for making proteins make up less than 2% of the human genome. Yet, for unknown reasons, most of our genome is transcribed into RNA. The same is true for many other organisms that are easier ...

New e-science service could accelerate cancer research

July 1, 2009

The University of Manchester and the European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI) have launched a major new e-science resource for biologists - which could accelerate research into ...

Recommended for you

Volcanic bacteria take minimalist approach to survival

August 4, 2015

New research by scientists at the University of Otago and GNS Science is helping to solve the puzzle of how bacteria are able to live in nutrient-starved environments. It is well-established that the majority of bacteria ...

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Four million years at Africa's salad bar

August 3, 2015

As grasses grew more common in Africa, most major mammal groups tried grazing on them at times during the past 4 million years, but some of the animals went extinct or switched back to browsing on trees and shrubs, according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.