Toward making smart phone touch-screens more glare and smudge resistant

August 19, 2009
Scientists have developed a test for evaluating and improving the performance of smudge- and glare-resistant screens used in smart phones, portable media players and other devices. Credit: The American Chemical Society

Scientists have discovered the secret to easing one of the great frustrations of the millions who use smart phones, portable media players and other devices with touch- screens: Reducing their tendency to smudge and cutting glare from sunlight. In a report today at the 238th National Meeting of the American Chemical Society, they describe development of a test for performance of such smudge- and reflection-resistant coatings and its use to determine how to improve that performance.

Steven R. Carlo, Ph.D., and colleagues note in the new study that consumer electronics companies value the appearance of their flagship devices just as much as their functionality. As a result, smudge, scratch and reflective resistant coatings have become standard on high-end cell phones and MP3 players. These coatings are effective. However, their structure and mechanisms are poorly understood, so Carlo and colleagues developed a test to determine the and effectiveness of smudge and reflective resistant materials. The test could also lead to a better understanding of the chemistry of these coatings and allow improved formulations and performance, Carlo says.

"Surfaces are particularly important in consumer products. This work investigates how products can be modified to reduce smudging and reflections. These modifications can offer improved resistance to fingerprints, anti-reflection properties or enhanced physical resistance," Carlo explains.

The basis of anti-smudge coatings is a compound called perfluoro alkyl ether, a derivative of Teflon with added ether groups to enhance its repellent effects. Anti-reflective materials use alternating layers of material, including silica and aluminum layers, to bend and diffuse light to reduce glare.

Since traditional chemical techniques could not be used on these super-thin coatings, Carlo and his team used depth profile X-ray photoelectron spectroscopy (XPS). That's a tool for comparing the chemistry of these coatings to predict their performance. The data allowed them to compare chain length, degree of branching and the hydrocarbon and fluoroether content of various samples. The fluoroether content has a key effect in enhancing efficacy. Anti-reflective coatings need alternating layers, which have differences in their refractive index (RI), a measure of how fast light travels through a material.

Fluorocarbons in general have low RI and they offer anti-smudge properties. XPS allowed the scientists to visualize the multi-layer structure and the chemical species present in each layer. In general, the greater the number of layers there are in a , the greater the anti-reflective properties. Carlo and his team also discovered that more silica and aluminum layers led to better glare reduction.

Source: American Chemical Society (news : web)

Explore further: Researchers Develop a Better Coating Solution

Related Stories

Researchers Develop a Better Coating Solution

June 24, 2004

Innovative researchers at The University of Queensland have come up with a way to stop your bathroom mirrors, spectacles and swim goggles from ever fogging up again. UQ physicists Dr Paul Meredith and Dr Michael Harvey ...

Nanocoating could eliminate foggy windows and lenses

August 29, 2005

Foggy windows and lenses are a nuisance, and in the case of automobile windows, can pose a driving hazard. Now, a group of scientists at the Massachusetts Institute of Technology (MIT) may have found a permanent solution ...

New Oxford spin-out to transform surfaces

September 7, 2006

The latest spin-out company from the University of Oxford, Oxford Advanced Surfaces Ltd, plans to apply surface science to develop a revolutionary coating for materials like plastics and Teflon.

Recommended for you

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.