Altered micriobiome prevalent in the diseased esophagus

August 1, 2009

Gastroesophageal reflux diseases , or GERD, affects about 10 million people in the United States, yet the cause and an unexpected increase in its prevalence over the last three decades remains unexplainable. Now, researchers have discovered that GERD is associated with global alteration of the microbiome in the esophagus. The findings, reported in the August 1, 2009 issue of Gastroenterology, may provide for the foundation for further study of the condition as a microecological disease with new treatment possibilities.

The findings of an altered microbiome may have profound implications for treating diseases of the esophagus, among the most common disorders affecting Western populations. In fact, about 40% of adults experience heartburn symptoms at least once a month. associated with GERD can lead to the development of Barrett's esophagus, precancerous condition. The incidence of cancer of the esophagus has increased six-fold since the 1970s--the fastest increasing cancer in the Western world.

"These findings have opened a new approach to understanding the pathogenesis of reflux-related disorders," states Zhiheng Pei, MD, PhD, assistant professor of pathology and medicine at NYU Langone Medical Center and lead author of the study. "At this time, we don't yet know whether the changes in bacterial populations are triggering GERD or are simply a response to it. But if changes in the bacterial population do indeed cause reflux, it may be possible to design new therapies with antibiotics, probiotic bacteria or prebiotics."

Researchers collected and sequenced bacteria from the esophagus of 34 patients, both healthy and those suffering from GERD (specifically and Barrett's esophagus). They found a high concentration of in the esophagus of healthy patients. In contrast, an altered type of microbiome dominated by Gram-negative bacteria was contained in greater proportions in those patients with esophagitis and Barrett's .

The human microbiome is comprised of all the microorganisms that reside in or on the human body, as well as all their DNA, or genomes. Microbial cells in the human body are estimated to outnumber human cells by a factor of ten to one. These communities, or microbiomes, however remain largely unstudied, leaving almost entirely unknown their influence upon human development, physiology, immunity and nutrition.

Source: New York University School of Medicine (news : web)

Explore further: Newly discovered esophagus stem cells grow into transplantable tissue

Related Stories

Researchers Shed Light on Esophageal Disease

June 8, 2009

(PhysOrg.com) -- Canadian Light Source (CLS) staff scientist Luca Quaroni and Dr. Alan Casson from the University of Saskatchewan used the synchrotron's infrared microscope to identify tissue afflicted with a condition known ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.