Michigan Tech Team Models Molecular Transistor

August 13, 2009 By Marcia Goodrich
Ravi Pandey at the blackboard

(PhysOrg.com) -- Electronic gadgetry gets tinier and more powerful all the time, but at some point, the transistors and myriad other component parts will get so little they won't work. That's because when things get really small, the regular rules of Newtonian physics quit and the weird rules of quantum mechanics kick in. When that happens, as physics professor and chair Ravindra Pandey puts it, "everything goes haywire."

Theorists in the field of molecular electronics hope to get around the problem by designing components out of a single molecule. Pandey's group has done just that—theoretically—by modeling a single-molecule on a computer.

"Transistor" has been an oft-used but rarely understood household word since cheap Japanese radios flooded the US market back in the 1960s. Field-effect transistors form the basis of all , which in turn are the foundation of all modern electronics.

A simple switch either diverts current or shuts it off. Transistors can also amplify the current by applying voltage to it (that's how amplifiers work).

A diagram of Pandey's three-terminal single-molecule transistor looks like an elaborate necklace and pendant, made up of six-sided rings of bedecked with hydrogen and nitrogen atoms. His group demonstrated that the electrical current running from the source to the drain (through the necklace) rises dramatically when voltage applied at the gate (through the pendant) reaches a certain level.

This happens when electrons in the current suddenly move from one orbital path around their atoms to another. Or, as Pandey says, "Molecular orbital energies appear to contribute to the enhancement of the source-drain current."

Their virtual molecule may soon exist outside a computer. "Several experimental groups are working to make real our theoretical results," says Pandey.

An article on the molecular transistor, "Electronic Conduction in a Model Three-Terminal Molecular Transistor," was published in 2008 in the journal Nanotechnology, volume 19. Coauthors are physics graduate student Haying Hay and Sashi Karna of the Army Research Lab.

Provided by Michigan Technological University (news : web)

Explore further: Single-Molecule Chemical-Field-Effect Transistor with Nanometer-Sized Gates

Related Stories

Theorist helps develop first single molecule transistor

June 7, 2005

A scientist at the University of Liverpool has helped to create the world's smallest transistor - by proving that a single molecule can power electric circuits Dr Werner Hofer, from the University's Surface Science Research ...

Recommended for you

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Aug 13, 2009
"'The spontaneous polarization (PS) of a ferroelectric liquid crystal is modulated reversibly by photocyclization of the dopant 1,2-bis[5%u2018-(4%u2018 %u2018-heptyloxyphenyl)-2%u2018-methylthien-3%u2018-yl]perfluorocyclopentene.' 'the resulting photoswitch is fatigue resistant and bistable.'"

not rated yet Aug 14, 2009
Photon induced electric field poling of a 3 nm ferroelectric molecule stacked in 3D used as a non-volatile bi-stable back to back diode will be the future of optical FET nanoelectronics.
not rated yet Aug 28, 2009
^ what he said... i think.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.