Gut hormone has 'remote control' on blood sugar

August 5, 2009

A gut hormone first described in 1928 plays an unanticipated and important role in the remote control of blood sugar production in the liver, according to a report in the August 6th Cell Metabolism, a Cell Press publication. What's more, the researchers show that rats fed a high-fat diet for a few days become resistant to the glucose-lowering hormone known as cholecystokinin (CCK).

"We show for the first time that CCK from the gut activates receptors to regulate glucose levels," said Tony Lam of the University of Toronto. "It does so via a gut-brain-liver neuronal axis."

Researchers already knew that CCK levels rise in the upper intestine in response to nutrients such as lipids to lower , Lam explained. Now, his team shows that the CCK hormone binds local receptors on nerves of the small intestine, sending a powerful signal to the brain. The brain in turn tells the liver to stop producing glucose.

Lam said his group described the gut-brain-liver circuitry in a paper published last year. The new study shows that it is CCK that acts as the trigger.

A primary increase of CCK-8, the biologically active form of CCK, in the upper intestine lowers glucose production independently of any change to circulating insulin levels, they found. CCK-8's effects depend on activation of CCK-A receptors and the signals they send to the brain and on to the liver, where glucose production slows. Those effects of the hormone begin to fail early in the onset of high-fat diet-induced insulin resistance, they report.

The findings suggest that CCK resistance, like insulin resistance, might be a key contributor to the high that often comes with a high-fat diet. It also suggests that drugs targeting the CCK receptors in the gut may hold promise for therapy. That's key, Lam said, because such gut-targeted drugs might be expected to have fewer side effects than currently available that work directly on the liver.

"This raises the possibility that we might be able to tap into the circuitry [to lower blood sugar]," Lam said. "At least now we know where to start."

Drug combinations that could increase sensitivity to both insulin and CCK might better combat diabetes than either could alone, he added. While the magnitude of CCK's influence over glucose levels relative to the effects of insulin aren't yet known, Lam said it's now clear both are important and neither works properly in the case of diabetes or obesity.

The researchers further suggest that CCK's role in the gut might somehow explain why people often show improvements in their blood sugar levels following gastric bypass surgeries, even before they lose any weight.

"Since we described that duodenal CCK normally triggers a gut-brain-liver axis to lower but fails to do so in high-fat fed rodents, we propose that duodenal bypass surgeries improve glucose tolerance in diabetes and obesity partly because the surgery bypasses an acquired defect involving duodenal CCK resistance in response to high-fat feeding," they wrote. Further studies are needed to explore that notion.

Source: Cell Press (news : web)

Explore further: Brain important in lowering blood sugar

Related Stories

Your gut has taste receptors

August 20, 2007

Researchers in the Department of Neuroscience at Mount Sinai School of Medicine have identified taste receptors in the human intestines. The taste receptor T1R3 and the taste G protein gustducin are critical to sweet taste ...

Some light shed on blood sugar production

April 30, 2008

A University of Alberta diabetes researcher has collaborated on a body of diabetes research that has unravelled the signalling pathway mystery that controls the production of blood sugar.

Apelin hormone injections powerfully lower blood sugar

November 4, 2008

By injecting a hormone produced by fat and other tissues into mice, researchers report in the November Cell Metabolism that they significantly lowered blood sugar levels in normal and obese mice. The findings suggest that ...

Recommended for you

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

Quantum Theory May Explain Wishful Thinking

April 14, 2009

(PhysOrg.com) -- Humans don’t always make the most rational decisions. As studies have shown, even when logic and reasoning point in one direction, sometimes we chose the opposite route, motivated by personal bias or simply ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.