New genetic mechanism that controls body's fat-building process found

August 26, 2009

At a time of alarming increases in obesity and associated diseases -- and fiery debates about the cost of health care -- a UCF research team has identified a new genetic mechanism that controls the body's fat-building process.

The discovery could open the door to new treatments for obesity and type 2 diabetes, and it has the potential to help hundreds of millions of people and dramatically cut health care costs.

A research team led by Pappachan Kolattukudy, director of UCF's Burnett School of Biomedical Sciences in the College of Medicine, found that a gene called MCPIP (Monocyte Chemotactic Protein-1 Induced Protein) controls the development of . Until now, a different protein, known as peroxisome proliferator-activated receptor gamma (PPAR gamma), has been universally accepted as the master controller of fat cell formation, known as adipogenesis.

The UCF findings give scientists a new direction for developing drugs that could benefit the more than 300 million people worldwide who are clinically obese -- and who have much higher risks of suffering from chronic disease and disability. In addition, it is projected that more than 300 million people will be diabetic by the year 2025.

Kolattukudy said MCPIP is potentially an ideal target for drugs that would prevent the body from becoming resistant to insulin and prone to type 2 diabetes.

"Our research has shown that MCPIP is a regulator of fat cell formation and blood vessel formation that feeds the growing fat tissue," he said. "Therefore, a drug that can shut down its function can prevent obesity and the major resulting from obesity, including diabetes and cardiovascular diseases."

The findings will be published in the October issue of the . An advance version is now available online on the journal's Web site.

Kolattukudy introduced MCPIP to living cells from mice that had been stripped of the PPAR gamma gene and found that the cells still completed the developmental process necessary to build fat.

His next step is to begin exploring chemical combinations to discover drugs that are effective at shutting down the novel gene. The development of new drugs that can block or slow down the formation of MCPIP likely would take several years. However, Kolattukudy is encouraged by the results of his research to date.

Kolattukudy, whose team in 2006 first identified the MCPIP gene as a contributor to heart disease, found its function as a fat inducer by focusing on its inflammatory influence.

Recent evidence has shown that the increased inflammation of fat cells causes them to become less sensitive to insulin, potentially triggering . A predominance of fatty tissue contributes to the inability to process insulin which, in turn, enables glucose or sugars to flow directly to the bloodstream instead of going into cells.

Source: University of Central Florida (news : web)

Explore further: Enzyme promotes fat formation

Related Stories

Enzyme promotes fat formation

October 12, 2007

The enzyme TPPII may contribute to obesity by stimulating the formation of fat cells, suggests a study in EMBO reports this week. The enzyme, TPPII, has previously been linked to making people feel hungry, but Jonathan Graff ...

Impaired fat-burning gene worsens diabetes

February 7, 2008

Researchers at the Swedish medical university Karolinska Institutet have in collaboration with researchers from Finland, China, Japan and the US discovered new cellular mechanisms that lead to in insulin resistance in people ...

Killing 'angry' immune cells in fat could fight diabetes

October 7, 2008

By killing off "angry" immune cells that take up residence in obese fat and muscle tissue, researchers have shown that they can rapidly reverse insulin resistance in obese mice. The findings reported in the October Cell Metabolism, ...

Scientists map molecular regulation of fat-cell genetics

November 4, 2008

A research team led by Mitchell Lazar, MD, PhD, Director of the Institute for Diabetes, Obesity, and Metabolism at the University of Pennsylvania School of Medicine, has used state-of-the-art genetic technology to map thousands ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Aug 29, 2009
Hilarious how we attempt to design drugs to offset our self-indulgence. How about putting down the fork.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.