New DNA and RNA aptamers offer unique therapeutic advantages

August 5, 2009

A novel class of drugs composed of single strands of DNA or RNA, called aptamers, can bind protein targets with a high strength and specificity and are currently in clinical development as treatments for a broad range of common diseases, as described in a comprehensive review article published online ahead of print in Oligonucleotides, a peer-reviewed journal published by Mary Ann Liebert, Inc.

Aptamers offer several advantages compared to protein or small , most notably their ease of production, low risk of inducing an immune reaction in humans, and amenability to chemical modifications that enhance their drug-like properties, including improved stability and residence time in the bloodstream. Aptamer therapeutics presently in clinical development target diseases and applications such as macular degeneration, coronary artery bypass graft surgery, and various types of cancer.

Kristina W. Thiel, PhD and Paloma H. Giangrande, PhD, from the University of Iowa, present a thorough review of aptamers and aptamer-based therapeutic strategies that have the highest likelihood of success. In the article entitled "Therapeutic Applications of and Aptamers," the authors describe the methods used to identify aptamers that specifically bind protein drug targets of interest, the types of modifications that have been made to aptamers to enhance their therapeutic potential, and the different types of aptamers that are currently in development. They also discuss the challenges that must still be overcome for aptamer technology to achieve its full potential.

"This is a comprehensive and timely review of aptamer development and therapeutic applications that our readers should enjoy," says John Rossi, PhD, Co-Editor-in-Chief of Oligonucleotides and Professor in the Department of Molecular Biology, Beckman Research Institute of the City of Hope (Duarte, CA).

More information: The article is available free online at www.liebertpub.com/oli

Source: Mary Ann Liebert, Inc.

Explore further: Built-in Blocker: Drug and antidote in the same molecule

Related Stories

Built-in Blocker: Drug and antidote in the same molecule

October 2, 2006

In cases of serious side effects or overdoses of medications, it can be vital to have a fast-acting antidote on hand. This is especially true of drugs that inhibit blood clotting, which are used to prevent and treat thromboses ...

Molecular detectors may refine cancer treatment

July 19, 2007

University of Florida researchers have successfully used molecular probes to detect subtle differences in leukemia cells from patient samples, an achievement that could lead to more effective ways to diagnose and treat cancer.

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.