A Super-Efficient Particle Accelerator

July 1, 2009

This image of data from NASA's Chandra X-ray Observatory and the European Southern Observatory's Very Large Telescope shows a part of the roughly circular supernova remnant known as RCW 86.

This remnant is the remains of an exploded star, which may have been observed on Earth in 185 AD by Chinese astronomers. By studying this remnant, a team of astronomers was able to understand new details about the role of remnants as the Milky Way's super-efficient particle accelerators.

The team shows that the shock wave visible in this area is very efficient at accelerating particles and the energy used in this process matches the number of cosmic rays observed on Earth.

The VLT data (colored red in the composite) was used to measure the temperature of the gas right behind the shock wave created by the stellar explosion. Using X-ray images from Chandra (blue), taken three years apart, the researchers were also able to determine the speed of the shock wave to be between one and three percent of the speed of light. The temperature found by these latest results is much lower than expected, given the measured shock wave's velocity. The researchers conclude that the missing energy goes into accelerating the .

Image credits: Optical: ESO/E. Helder; X-ray: NASA/CXC/Univ. of Utrecht/J.Vink et al.

Provided by NASA

Explore further: Supernova 1987A: Fast Forward to the Past

Related Stories

Supernova 1987A: Fast Forward to the Past

August 18, 2005

Recent Chandra observations have revealed new details about the fiery ring surrounding the stellar explosion that produced Supernova 1987A. The data give insight into the behavior of the doomed star in the years before it ...

W28: A Mixed Bag of Supernova Remnant

June 4, 2008

When some stars die, they explode as supernovas and their debris fields (aka, "supernova remnants") expand into the surrounding environments. There are several different types, or categories, of supernova remnants. One of ...

Recommended for you

NASA's space-station resupply missions to relaunch

November 29, 2015

NASA's commercial space program returns to flight this week as one of its private cargo haulers, Orbital ATK, is to launch its first supply shipment to the International Space Station in more than 13 months.

The hottest white dwarf in the Galaxy

November 25, 2015

Astronomers at the Universities of Tübingen and Potsdam have identified the hottest white dwarf ever discovered in our Galaxy. With a temperature of 250,000 degrees Celsius, this dying star at the outskirts of the Milky ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Jul 02, 2009

The magnetic field of a neutron star may accelerate protons away from a supernova remnant.

This may also be the mechanism that maintains mass separation in the Sun by generating a carrier gas of protons moving upward from the solar core ["Superfluidity in the solar interior: Implications for solar eruptions and climate," Journal of Fusion Energy 21 (2002) 193-198; http://arxiv.org/...501441v1 ].

With kind regards,
Oliver K. Manuel

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.