Reexamination of T. rex verifies disputed biochemical remains

July 29, 2009
A new analysis of the remains of a T. rex has confirmed traces of protein from blood and bone, tendons, or cartilage. Credit: Wikimedia Commons

A new analysis of the remains of a Tyrannosaurus rex (T. rex) that roamed Earth 68 million years ago has confirmed traces of protein from blood and bone, tendons, or cartilage. The findings, scheduled for publication in the Sept. 4 issue of ACS' monthly Journal of Proteome Research, is the latest addition to an ongoing controversy over which biochemical remnants can be detected in the dino.

In the study, Marshall Bern, Brett S. Phinney and David Goldberg point out that the first analysis in 2007 of a well-preserved, fossilized T. rex identified traces of seven distinct protein fragments, or peptides, from collagen. That material is one of the primary components of bone, tendons and other connective tissue. However, later studies disputed that finding, suggesting that it was a statistical fluke or the result of contamination from another laboratory sample.

The scientists describe reanalysis of the T. rex data and also report finding evidence of substances found in collagen. "In summary, we find nothing obviously wrong with the Tyrannosaurus rex [analysis from 2007]," the report states. "The identified peptides seem consistent with a sample containing old, quite possibly very ancient, bird-like bone, contaminated with only fairly explicable proteins. and collagen are plausible proteins to find in fossil bone, because they are two of the most abundant proteins in bone and bone marrow."

More information: "Reanalysis of Mass Spectra";

Source: American Chemical Society (news : web)

Explore further: Fossilized frogs yield bone marrow

Related Stories

Fossilized frogs yield bone marrow

July 27, 2006

Scientists say they've extracted bone marrow from fossilized frogs and salamanders that died 10 million years ago in the swamps of northeastern Spain.

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.