Researchers discover genetic circuit that regulates behavior of stem cells

July 20, 2009
Stem cells. Image: Universitat Politčcnica de Catalunya

Jordi Garcia Ojalvo -- a lecturer at the Department of Physics and Nuclear Engineering of the Universitat Politčcnica de Catalunya’s School of Industrial and Aeronautical Engineering of Terrassa (ETSEIAT, Spain) -- has discovered the genetic circuit that controls the behavior of embryonic stem cells. The discovery was made in collaboration with University of Cambridge researchers. The process by which a stem cell is transformed into another type of cell is called differentiation, and the ability to change into other cell types is known as pluripotentiality. 

Up until now it was generally believed in the international scientific community that embryonic are in a state of biochemical repose, static, awaiting a signal that causes them to differentiate, that gives them the initial trait which leads them to become bone, blood or skin cells, or any other type of cell of which an organism is composed. Jordi Garcia Ojalvo, one of the coordinators of the Nonlinear Dynamics, Nonlinear Optics and Lasers research group at the UPC’s Terrassa Campus, has discovered that this view is not correct, and that in fact the state of pluripotentiality in stem cells is anything but static.

Greater efficiency in generating new cells

In a paper published this July in the prestigious journal PLoS Biology, Jordi Garcia Ojalvo and the group headed by University of Cambridge researcher Alfonso Martínez Arias say that the pluripotentiality of embryonic stem cells is not static and that these cells are in fact constantly changing. Garcia-Ojalvo and Martínez-Arias also found that there is always a subset of stem cells that are on alert, ready to respond to the signals that trigger the process of transformation known as differentiation. This ensures that an embryo’s differentiation program is completed correctly and with the necessary speed.

The study—carried out using mouse embryonic stem cells but with results that are also valid for human stem cells—allowed the researchers to identify the that gives stem cells their pluripotent properties. Thanks to this discovery, it will now be possible to more effectively maintain in a pluripotent state in vitro and to more efficiently obtain differentiated cells—blood, bone, skin and other cells—from stem cells.

Chance plays a key role

For the UPC Terrassa and Cambridge researchers, the starting point on the road to their discovery was the hypothesis that chance plays an important role in the process. This is consistent with the fact that disorder plays a fundamental role in the functioning of living organisms. Cells are continually subject to random fluctuations. Based on this premise, Garcia-Ojalvo developed a mathematical model of the functioning of the proposed genetic circuit in the presence of disorder. Martínez-Arias then conducted experimental procedures to confirm these calculations in the lab.

Like athletes in constant motion

Garcia-Ojalvo uses a sports metaphor to explain the discovery: ‘Up until now we thought stem cells were static, like athletes about to start a 100-metre race, lined up waiting for the starting gun to go off to begin their sprint to the finish line. But we’ve discovered that this isn’t the way it works. In fact, stem cells are like athletes that are always running, in constant motion, back and forth. So when the signal to differentiate comes, the cells moving in the right direction are able to reach the finish line much faster than they would have if they’d been standing still. This makes sense because embryos have to develop very fast, and stem cells have very little time to change into whatever type of cell is needed at a particular time and in a particular position. What’s more, they have to do this in a very reliable and precise way so that malformations are not produced.’

Source: Universitat Politčcnica de Catalunya

Explore further: Study: Skin cells turned into stem cells

Related Stories

Study: Skin cells turned into stem cells

August 22, 2005

The controversy over embryonic stem cell research may become moot with a procedure that turns skin cells into what appear to be embryonic stem cells.

New study hopeful on neural stem cells

August 5, 2006

Neural stem cells derived from federally approved human embryonic cells are inferior to stem cells derived from donated fetal tissue, a new study found.

Scientists announce stem-cell discovery

April 20, 2006

U.S. scientists say they've uncovered signatures near crucial developmental genes -- a critical step toward creating embryonic stem cells for medicine.

From stem cells to organs: The bioengineering challenge

February 16, 2008

For more than a decade, Peter Zandstra has been working at the University of Toronto to rev up the production of stem cells and their descendants. The raw materials are adult blood stem cells and embryonic stem cells. The ...

Recommended for you

How Frankenstein saved humankind from probable extinction

October 28, 2016

Frankenstein as we know him, the grotesque monster that was created through a weird science experiment, is actually a nameless Creature created by scientist Victor Frankenstein in Mary Shelley's 1818 novel, "Frankenstein." ...

Closer look reveals tubule structure of endoplasmic reticulum

October 28, 2016

(—A team of researchers from the U.S. and the U.K. has used high-resolution imaging techniques to get a closer look at the endoplasmic reticulum (ET), a cellular organelle, and in so doing, has found that its structure ...

Computer model is 'crystal ball' for E. coli bacteria

October 28, 2016

It's difficult to make predictions, especially about the future, and even more so when they involve the reactions of living cells—huge numbers of genes, proteins and enzymes, embedded in complex pathways and feedback loops. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.