Researchers gain insight into mechanism underlying Huntington's

July 13, 2009

Researchers at the University of Kentucky Markey Cancer Center and Graduate Center for Toxicology (GCT) have gained new insight into the genetic mechanisms underlying Huntington's disease and other neurodegenerative or neuromuscular disorders caused by trinucleotide repeats (or TNRs) in DNA.

The research, performed in the laboratory of Dr. Guo-Min Li, UK professor of toxicology and and the Madeline James & Edith Gardner Distinguished Chair in Cancer Research, examined the mechanisms involved in the development of a specific type of genetic mutation known as trinucleotide repeat expansions. Diseases associated with these mutations, including Huntington's disease, are called trinucleotide repeat disorders.

Findings were published today in Nature Structural & Molecular Biology. GCT research scientist Caixia Hou, student Nelson Chan, and professor Liya Gu are coauthors of the study.

"Mutations - the genetic changes in DNA - can lead to many different types of disease, depending on where and in what manner they occur," Li said. "How these genetic changes escape normal DNA repair systems and become ingrained in an affected gene pool leading to familial disorders has been a longstanding subject of study in my laboratory at the UK Medical Center."

The expansion of TNRs at unique sites in the human genome is associated with at least 15 familial, neurodegenerative or neuromuscular disorders. The mechanism of TNR instability is poorly understood. However, because DNA expansions require DNA synthesis, DNA replication and/or DNA repair must be involved.

Two key TNRs, CAG and CTG repeats - associated with Huntington's disease and myotonic dystrophy, respectively - tend to form hairpin structures via strand slippage in the newly synthesized or "nicked" DNA strand during DNA synthesis associated with DNA replication and/or repair. These hairpin structures are highly thermo-stable and do not "melt" under normal physiologic conditions, and thus they are perceived as "fixed" in the DNA once formed, thereby leading to TNR expansions.

Using an extract of human cells, Li and his colleagues identified a novel DNA repair pathway referred to as DNA hairpin repair (HPR), which specifically targets TNR hairpin removal in the daughter strand, ensuring the fidelity of the TNR sequences in the parental strand. It is proposed that defects or inadequacies in the HPR system may be responsible for TNR instability in the disease state.

More information: http://www.nature.com/nsmb/index.html

Source: University of Kentucky

Explore further: Researcher defines proteins that distinguish chromosome ends from DNA double-strand breaks

Related Stories

Real-time observation of the DNA-repair mechanism

May 22, 2008

For the first time, researchers at Delft University of Technology have witnessed the spontaneous repair of damage to DNA molecules in real time. They observed this at the level of a single DNA molecule. Insight into this ...

Research breakthrough targets genetic diseases

January 20, 2009

(PhysOrg.com) -- A cure for debilitating genetic diseases such as Huntington’s disease, Friedreich’s ataxia and Fragile X syndrome is a step closer to reality, thanks to a recent scientific breakthrough.

Recommended for you

Plastic in 99 percent of seabirds by 2050

August 31, 2015

Researchers from CSIRO and Imperial College London have assessed how widespread the threat of plastic is for the world's seabirds, including albatrosses, shearwaters and penguins, and found the majority of seabird species ...

Researchers unveil DNA-guided 3-D printing of human tissue

August 31, 2015

A UCSF-led team has developed a technique to build tiny models of human tissues, called organoids, more precisely than ever before using a process that turns human cells into a biological equivalent of LEGO bricks. These ...

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(Phys.org)—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.