Chemists make liquid protein

July 23, 2009
Bristol chemists make liquid protein
Ferritin is a globular protein complex consisting of 24 protein subunits and is the primary intracellular iron-storage protein.

(PhysOrg.com) -- The first known example of a liquid protein has been made by chemists at the University of Bristol opening up the possibility of a number of medical and industrial applications including high-potency pharmaceuticals and protein-based coolants and lubricants.

Professor Stephen Mann and Dr Adam Perriman of the University’s School of Chemistry, along with Helmut Cölfen of the Max Planck Institute for Colloid and Interface Research in Germany, have made a liquid form of the iron storage protein, ferritin. Their technique modifies the surface of the protein so that it melts into a viscous liquid.

The Bristol team attached positively charged amine groups to the surface of the ferritin, which then acted as binding sites for electrostatic attachment of a negatively charged polymer surfactant, creating proteins that bristle with long hairs. This ferritin-polymer composite forms a solid that melts at around 30°C to a liquid crystal with an orderly orientation of particles. When heated to 50°C, the liquid appears to act like an ordinary fluid, with disorder in the positions and orientations of particles.

The work has just been published in the chemistry journal, , and preliminary results on other proteins such as haemoglobin and myoglobin - proteins that carrying oxygen around the body - indicate that the method may be of general application.

The liquid protein is more highly concentrated than a protein dissolved in water which means that higher doses of medically useful proteins could be administered, for example in new wound dressing treatments which could deliver oxygen more efficiently to a wound in order to promote healing. Enzymes that break apart other proteins could also be used to clear wounds of debris from dead cells.

Professor Mann said: “This is a very exciting result with fundamental significance for understanding liquids comprising nanostructured components. Also, it represents a possible way forward to a novel state of biomolecular matter, and could therefore have a number of important applications. We hope to explore some of these - for example in biomedical and sensor technology - over the next five years or so.”

Provided by University of Bristol (news : web)

Explore further: RESEARCHERS USING PROTEINS TO DEVELOP NANOPARTICLES TO AID IN ENVIRONMENTAL REMEDIATION

Related Stories

Scientist Creates Liquid Crystals with High Metal Content

April 3, 2006

Researchers at North Carolina State University have successfully engineered liquid crystals that contain very high concentrations of metals – potentially paving the way toward the creation of “magnetic liquids” and ...

Protein Cage Helps Nanoparticles Target Tumors

January 17, 2007

Researchers at Montana State University have used an engineered form of ferritin, a cage-like iron storage protein, to both synthesize and deliver iron oxide nanoparticles to tumors. The investigators, led by Trevor Douglas, ...

Scientists discover novel way to remove iron from ferritin

November 2, 2007

A new study led by Children's Hospital Oakland Research Institute senior scientist, Elizabeth Theil, Ph.D., is the first to suggest that a small protein or heptapeptide (seven amino acids wrapped into one unit) could be used ...

Scientists locate disease switches

July 17, 2009

A team of scientists from the University of Copenhagen and the Max Planck Institute in Germany, has identified no less than 3,600 molecular switches in the human body. These switches, which regulate protein functions, may ...

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.