Researchers capture bacterial infection on film (w/ Video)

Jul 27, 2009
Confocal microscope image showing insect immune cells (green) containing fluorescently labelled E.coli (red). Credit: University of Bath

(PhysOrg.com) -- Researchers have developed a new technique that allows them to make a movie of bacteria infecting their living host.

Whilst most studies of bacterial are done after the death of the infected organism, this system developed by scientists at the University of Bath and University of Exeter is the first to follow the progress of infection in real-time with living organisms.

The researchers used developing fruit fly embryos as a model organism, injecting fluorescently tagged bacteria into the and observing their interaction with the insect's immune system using time-lapse confocal microscopy.

The researchers can also tag individual bacterial proteins to follow their movement and determine their specific roles in the infection process.

This video is not supported by your browser at this time.
The insect immune cells known as hemocytes (green) rapidly engulf the bacteria following infection and this can be studied in real-time using timelapse microscopy. Credit: Isabella Vlisidou, University of Bath

The scientists are hoping to use this system in the future with human pathogens such as Listeria and Trypanosomes. By observing how these bacteria interact with the , researchers will gain a better understanding of how they cause an infection and could eventually lead to better antibacterial treatments.

Dr Will Wood, Research Fellow in the Department of Biology & Biochemistry at the University of Bath, explained: " often behave very differently once they have been taken out of their natural environment and cultured in a petri dish.

"In the body, immune surveillance cells such as hemocytes (or macrophages in vertebrates) are exposed to a battery of signals from different sources. The cells integrate these signals and react to them accordingly.

"Once these cells are removed from this complex environment and cultured in a petri dish these signals are lost. Therefore it is really important to study whole organisms to fully understand how bacteria interact with their host."

Dr Nick Waterfield, co-author on the study and Research Officer at the University of Bath, said: "To be able to film the microscopic battle between single bacterial cells and immune cells in a whole animal and in real time is astounding.

"It will ultimately allow us to properly understand the dynamic nature of the infection process."

Professor Richard Ffrench-Constant, Professor of Molecular Natural History at the University of Exeter, added: "For the first time this allows us to actually examine infection in real time in a real animal - it's a major advance!"

The study has been published in PLoS .

Source: University of Bath (news : web)

Explore further: Researchers discover new mechanism of DNA repair

Related Stories

Recommended for you

Researchers discover new mechanism of DNA repair

20 hours ago

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

Stopping Candida in its tracks

Jul 03, 2015

Scientists are one step closer to understanding how a normally harmless fungus changes to become a deadly infectious agent.

New technique maps elusive chemical markers on proteins

Jul 02, 2015

Unveiling how the 20,000 or so proteins in the human body work—and malfunction—is the key to understanding much of health and disease. Now, Salk researchers developed a new technique that allows scientists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.