Forecasting cancer recurrence

Jul 28, 2009

Two people with the same kind of cancer who receive the exact same treatment may nevertheless have different chances of their tumors coming back years later. Now a team of scientists has developed a computer model that predicts cancer recurrence in an individual based on how her tumor changes size in response to the first rounds of radiation therapy.

The team, headed by Jian Z. Wang, director of the Response Modeling Program at the James Cancer Hospital and Solove Research Institute of Ohio State University in Columbus, will present the findings at the 51st Annual Meeting of the American Association of Physicists in Medicine (AAPM) in Anaheim, California. The leading author, Zhibin Huang, has been selected as this meeting's winner of the Jack Fowler Junior Investigator's Competition.

Huang and colleagues at Ohio State University studied 80 women with cervical cancer who were diagnosed with tumors ranging from the size of a marble to the size of a grapefruit. Each woman was treated with a course of radiation therapy -- beams of energy that destroyed the cancerous cells in her pelvis. After few weeks of radiation treatment, the volume of each shrinking tumor was measured using an .

By fitting a to this data, Huang calculated two things important for understanding how the tumors were responding to the radiotherapy: the fraction of cancerous cells that survived each of the daily radiation treatments and the amount of time it took each woman's body to clear away and flush out those cells that were destroyed. The two properties vary from individual to individual and from tumor to tumor.

These numbers could be used to predict whether or not a woman's cervical cancer would come back years after her treatments. If each daily radiation treatment annihilated at least 70 percent of a tumor, a woman had a 30 percent better chance of avoiding recurrence than an individual with a more resistant .

Similarly, women whose bodies took longer than 22 days to clear out dead cells after each treatment were almost twice as likely to see their tumors reappear down the road.

The results, presented at this year's AAPM meeting, suggest that not all cervical cancers are the same. To improve treatment, said Wang, patients should be grouped based on whether their tumors are radioresistant or radiosensitive.

Other kinds of cancer could also benefit from this approach, says Nina A. Mayr, a professor of radiation oncology at the Ohio State University James Cancer Hospital and Solove Research Institute. "Using similar techniques, ongoing projects from our group are tackling other cancer sites, such as lung and prostate ."

Source: American Institute of Physics

Explore further: Second-line cetuximab active beyond progression in quadruple wild-type patients with mCRC

Related Stories

Bright tumors, dim prospects

Sep 13, 2007

It doesn't matter how small or large it is, if a cervical tumor glows brightly in a PET scan, it's apt to be more dangerous than dimmer tumors. That's the conclusion of a new study of cervical cancer patients at Washington ...

Nanoparticles + light = dead tumor cells

Jul 29, 2008

Medical physicists at the University of Virginia have created a novel way to kill tumor cells using nanoparticles and light. The technique, devised by Wensha Yang, an instructor in radiation oncology at the University of ...

Proton therapy lowers chance of later cancers

Sep 22, 2008

Patients who are treated with proton therapy (a specialized type of external beam radiation therapy using protons rather than X-rays to treat cancer) decreases the risk of patients developing a secondary cancer by two-fold, ...

Recommended for you

Spicy treatment the answer to aggressive cancer?

Jul 03, 2015

It has been treasured by food lovers for thousands of years for its rich golden colour, peppery flavour and mustardy aroma…and now turmeric may also have a role in fighting cancer.

Cancer survivors who smoke perceive less risk from tobacco

Jul 02, 2015

Cancer survivors who smoke report fewer negative opinions about smoking, have more barriers to quitting, and are around other smokers more often than survivors who had quit before or after their diagnosis, according to a ...

Melanoma mutation rewires cell metabolism

Jul 02, 2015

A mutation found in most melanomas rewires cancer cells' metabolism, making them dependent on a ketogenesis enzyme, researchers at Winship Cancer Institute of Emory University have discovered.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.