Bad mitochondria may actually be good for you

July 22, 2009

Mice with a defective mitochondrial protein called MCLK1 produce elevated amounts of reactive oxygen when young; that should spell disaster, yet according to a study in this week's JBC these mice actually age at a slower rate and live longer than normal mice.

Mitochondrial is a popular theory explaining the aging process; over time, reactive oxygen species produced by while they make energy slowly accumulate and begin damaging , including the mitochondria. Several recent studies have begun to question this theory, though, and to get some more direct answers, Siegfried Hekimi and colleagues at McGill University examined the mitochondria of MCLK1-defective mice, a strain known for its longevity, at various ages.

What they found was that in young (3 month old) MCLK1-defective mice, mitochondria were quite energy inefficient and produced a lot of harmful oxygen radicals; yet surprisingly, when these mice were 23 months old, their mitochondria were working better than normal mice. So, despite the oxidative stress, these mice experienced less deterioration than normal.

To confirm whether MCLK1-defiency could be somehow protective, the researchers crossed MCLK1-defective mice with those lacking SOD2, a major protein antioxidant. Normally, SOD2-defective mice accumulate cellular damage quickly, yet when combined with MCLK1-defiency, they exhibited less damage and oxidative stress.

In explaining this seeming paradox, Hekimi and colleagues suggest that while MCLK1-defective mice produce more oxygen radicals from their mitochondria, their overall inefficiency results in less energy and fewer oxygen radicals being produced in other parts of a cell. Thus while these mice may have some higher risks of damage while young, they accumulate less damage as they age -a finding that seems to indicate the mitochondrial stress theory may not be correct.

More information: "Reversal of the Mitochondrial Phenotype and Slow Development of oxidative biomarkers of aging in long-lived Mclk1+/- mice" Jerome Lapointe, Zaruhi Stepanyan, Eve Bigras and Siegfried Hekimi. Journal of Biological Chemistry. Article link: www.jbc.org/cgi/content/abstract/284/30/20364

Source: American Society for Biochemistry and Molecular Biology

Explore further: Anti-aging hormone actions revealed

Related Stories

Anti-aging hormone actions revealed

November 3, 2005

Scientists say the recently discovered anti-aging hormone "Klotho" acts by increasing a cell's ability to detoxify harmful reactive oxygen species.

Free radical cell death switch identified

June 1, 2006

U.S. scientists say they've found a molecular pathway that might cause stroke, diabetes, heart and neurodegenerative disease and even the aging process.

Recommended for you

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.