Squid 'sight': Not just through eyes

June 1, 2009

It's hard to miss the huge eye of a squid. But now it appears that certain squids can detect light through an organ other than their eyes as well.

That's what researchers at the University of Wisconsin-Madison report in the current issue (June 2) of the .

The study shows that the light-emitting organ some squids use to camouflage themselves to avoid being seen by predators — usually fish sitting on the ocean floor — also detects light.

The findings may lead to future studies that provide insight into the mechanisms of controlling and perceiving light.

"Evolution has a 'toolkit' and when it needs to do a particular job, such as see light, it uses the same toolkit again and again," explains lead author Margaret McFall-Ngai, a professor of medical microbiology and immunology at the UW-Madison School of Medicine and Public Health (SMPH). "In this case, the light organ, which comes from different tissues than the eye during development, uses the same proteins as the eye to see light."

In studying the for the past 20 years, McFall-Ngai and her colleagues have been drawn to the fact that the squid-light organ is a natural model of symbiosis — an interdependent relationship between two different species in which each benefits from the other.

In this case, the light organ is filled with luminous bacteria that emit light and provide the squid protection against predators. In turn, the squid provides housing and nourishment for the bacteria.

The UW-Madison researchers have been intrigued by the light organ's "counterillumination" ability — this capacity to give off light to make squids as bright as the ocean surface above them, so that predators below can't see them.

"Until now, scientists thought that illuminating tissues in the light organ functioned exclusively for the control of the intensity and direction of light output from the organ, with no role in light perception," says McFall-Ngai. "Now we show that the E. scolopes squid has additional light-detecting tissue that is an integral component of the light organ."

The researchers demonstrated that the squid light organ has the molecular machinery to respond to light cues. Molecular analysis showed that genes that produce key visual proteins are expressed in light-organ tissues, including genes similar to those that occur in the retina. They also showed that, as in the retina, these visual proteins respond to light, producing a physiological response.

"We found that the light organ in the squid is capable of sensing light as well as emitting and controlling the intensity of luminescence," says co-author Nansi Jo Colley, SMPH professor of ophthalmology and visual sciences and of genetics.

Adds McFall-Ngai, "The tissues may perceive environmental light, providing the animal with a mechanism to compare this light with its own light emission."

McFall-Ngai's large research program into the relatively simple squid-light organ symbiosis aims to shed on symbiosis affecting humans.

"We know that humans house trillions of bacteria associated with components of eight of their 10 organ systems," she says. "These communities of bacteria are stable partners that make us healthy."

Source: University of Wisconsin-Madison (news : web)

Explore further: Scientists Uncover Inner Workings of Rare Eye Cells

Related Stories

Scientists Uncover Inner Workings of Rare Eye Cells

January 27, 2005

Three years ago, Brown University researchers discovered new eye cells – indeed a parallel visual system. Now, in a report in Nature, they explain how these exotic cells harness light energy to do their chief job: setting ...

Sonar monitors California squid fishery

February 7, 2006

California's $30-million-a-year squid industry has quadrupled during the past decade and now scientists are using sonar to assess squid stocks.

Study: Squid are masters of disguise

September 25, 2006

U.S. marine scientists say squid are masters of disguise, using their pigmented skin cells to camouflage themselves nearly instantaneously from predators.

Single gene lets bacteria jump from host to host

February 1, 2009

(PhysOrg.com) -- All life -- plants, animals, people -- depends on peaceful coexistence with a swarm of microbial life that performs vital services from helping to convert food to energy to protection from disease.

Recommended for you

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Study suggests fish can experience 'emotional fever'

November 25, 2015

(Phys.org)—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...

How cells 'climb' to build fruit fly tracheas

November 25, 2015

Fruit fly windpipes are much more like human blood vessels than the entryway to human lungs. To create that intricate network, fly embryonic cells must sprout "fingers" and crawl into place. Now researchers at The Johns Hopkins ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.