Portable Precision: A New Type of Atomic Clock

June 11, 2009

The most accurate atomic clocks in the world are based on the output of cesium atoms. These ultra-precise fountain clocks measure the frequency and time interval of seconds by using a fountain-like movement of cesium atoms. Unfortunately, fountain clocks aren’t easily transportable- they tend to be huge, stationary apparatuses stuck in laboratories.

Physicists from the University of New South Wales, Australia and the University of Nevada, Reno propose a method to reduce the size of atomic clocks to handy, compact devices using specially engineered optical lattices.

Optical lattices are created by trapping atoms in a standing wave light field formed by laser beams. But the lasers can hamper the time keeping ability of the atoms. By applying an external magnetic field to the lattice in a specific direction, the atomic clock is rendered insensitive to the laser field strength. This property allows the to function properly at a smaller size.

While a portable cesium clock could benefit numerous scientific and general applications, the expected accuracy of the optical lattice clocks has yet to be explored. Calling for further theoretical and experimental investigation, the authors assert that even if the precision of such clocks turns out to be less competitive than the fountains, the optical lattice clocks have a clear advantage of a smaller apparatus size, making them useful in applications like navigation systems and precision tests of fundamental symmetries in space.

Citation:
V.V. Flambaum, V.A. Dzuba, and A. Derevianko
Physical Review Letters (forthcoming)

Explore further: Optical Atomic Clock: A long look at the captured atoms

Related Stories

Optical Atomic Clock: A long look at the captured atoms

February 5, 2008

Optical clocks might become the atomic clocks of the future. Their "pendulum", i.e. the regular oscillation process which each clock needs, is an oscillation in the range of the visible light. As its frequency is higher than ...

Portable Precision: A New Type of Atomic Clock

December 10, 2008

(PhysOrg.com) -- The most accurate atomic clocks in the world are based on the output of cesium atoms. These ultra-precise fountain clocks measure the frequency and time interval of seconds by using a fountain-like movement ...

Recommended for you

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Birger
not rated yet Jun 12, 2009
Regarding applications: Since airborne gravimetry has been considered as a way of locating commercially useful ore bodies, and since this method combines sensitive gravity detectors along with satellite navigation, this portable atomic clock might just make the method viable.
E_L_Earnhardt
not rated yet Jun 13, 2009
Sometimes, in my research, I do need to know "What time it is" rather closely. For this purpose I have a small, portable repeater slaved to the clock
in Denver, Col. It is within 1 sec., portable. For nearly all cases this will do. Cost -$75 Radio Shack

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.