Pigs' connective tissue cells converted into stem cells (w/ Podcast)

June 25, 2009
University of Missouri researchers recently developed the ability to take regular cells from a pig's connective tissues and transform them in stem cells, eliminating several hurdles and some controversy over the use of stem cells. Credit: Christian Basi/University of Missouri

(PhysOrg.com) -- For years, proponents have touted the benefits of embryonic stem cell research, but the potential therapies still face hurdles. Side effects such as tumor development, a lack of an effective and long-term animal model to test new therapies, and genetic incompatibility between the host and donor cells are some of the problems faced by researchers.

Now, scientists at the University of Missouri have developed the ability to take regular cells from a pig's connective tissues, known as fibroblasts, and transform them into , eliminating several of these hurdles. The new study appeared in a recent issue of the (PNAS).

"It's important to develop a good, accurate animal model to test these new therapies," said R. Michael Roberts, Curator's Professor of Animal Science and Biochemistry and a researcher in the Bond Life Sciences Center. "Cures with stem cells are not right around the corner, but the pig could be an excellent model for testing new therapies because it is so similar to humans in many ways."

This video is not supported by your browser at this time.
R. Michael Roberts explains why the pig is such a good model for future stem cell research. Credit: Christian Basi/University of Missouri

In their research, Roberts; Toshihiko Ezashi, a research assistant professor of animal sciences in the College of Agriculture, Food and Natural Resources and lead author on the study; and Bhanu Telugu, a post-doctoral fellow in animal sciences; cultured fibroblasts from a fetal pig. The scientists then inserted four specific genes into the cells. These genes have the ability to "re-program" the differentiated fibroblasts so that they "believe" they are stem cells, take on many of the properties of stem cells that would normally be derived from embryos, and, like , differentiate into many, possibly all, of the more than 250 cell types found in the body of an adult pig.

Since these "induced " were not derived from embryos and no cloning technique was used to obtain them, the approach eliminates some of the controversy that has accompanied stem cell research in the past. The next step is for Roberts and his team to remove the four genes that reprogrammed the original cells. Then the researchers will determine what needs to be done to direct the new stem cells to develop into specific cell types.

"Right now, we researchers have not answered questions concerning how to make stem cells develop into just one type of cell, such as those of liver, kidney or blood cells, rather than a mixture," Roberts said. "Now that we have been able to turn regular cells into stem cells, we need to learn how to make the right type of tissue and then test putting that new tissue back into the animal."

Roberts also noted that using the same animal for both the beginning and end of the research would eliminate any host rejection of the transplanted cells once scientists reach the point where they are putting the new tissue back into the animal. Using pigs rather than mice allows researchers to observe any long-term effects of the therapies. Because mice typically have a short life span and differ from humans more than pigs, it is less difficult to predict and/or study long-term effects using , Telugu said.

Source: University of Missouri-Columbia (news : web)

Explore further: Study: Skin cells turned into stem cells

Related Stories

Study: Skin cells turned into stem cells

August 22, 2005

The controversy over embryonic stem cell research may become moot with a procedure that turns skin cells into what appear to be embryonic stem cells.

New study hopeful on neural stem cells

August 5, 2006

Neural stem cells derived from federally approved human embryonic cells are inferior to stem cells derived from donated fetal tissue, a new study found.

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.