How mitochondria get their membranes bent

June 24, 2009

Underneath their smooth surface mitochondria harbor an elaborately folded inner membrane. It holds a multitude of bottleneck like invaginations, which expand into elongated cavities. Now researchers have identified two proteins linked in an antagonistic manner that are relevant for governing inner membrane structure.

Mitochondria are the powerhouses of cells. Underneath their smooth surface they harbor an elaborately folded inner . It holds a multitude of bottleneck like invaginations, which expand into elongated cavities (cristae). The narrow shape of the entrance or pore to the cristae ('crista junction') allows separation of the intracristal space and storage of molecules. Cytochrome c, for example, an important signaling protein in (), is stored in this compartment. When apoptosis is triggered, the pores enlarge and cytochrome c is released into the cytosol.

Thus, understanding of how the pore diameter and the shape of the inner membrane are regulated on a molecular basis is of great relevance to a better understanding of mitochondrial function in general. Recently, in cooperation with other research teams, the group of Prof. Andreas Reichert, who has been appointed as professor for Mitochondrial Biology to the Goethe University within the Cluster of Excellence Macromolecular Complexes in 2007, has identified two proteins linked in an antagonistic manner that are relevant for governing inner membrane structure.

In the current issue of the the Rabl, Soubannier et al. report on their quest of slow-growing baker`s yeast mutants harboring deformed mitochondria. Thereby, they discovered the protein Fcj1 ("Formation of criasta junction protein 1"), which is embedded in the inner membrane and accumulates at crista junctions. Upon increased expression of Fcj1 the number of cristae junctions goes up. Without the protein, however, crista junctions are lacking and the inner cristae membrane forms internal parallel stacks of vesicles.

On the other hand, the researchers found that regular assemblies (supercomplexes) of the F1FO-ATPase, a protein complex required for supplying the cell's energy, accumulated at the cristae tips but were less abundant at crista junctions. In addition, Fcj1 and the F1FO-ATPase appear to have opposing functions. In fact, Fcj1 reduces the formation of F1FO-supercomplexes. "We hypothesize, Fcj1 makes sure that the membrane can adopt a negative curvature, while the F1FO-ATPase supercomplex induces positive bending", Andreas Reichert interprets the results. "This is highly exciting, as we have for the first time found out how mitochondrial ultrastructure is regulated and which components determine the structure of crista junctions at all."

More information: Rabl, R.*, Soubannier, V.*, Scholz, R., Vogel, F., Mendl, N., Vasiljev-Neumeyer, A., Körner, C., Jagasia, R., Keil, T., Baumeister, W., Cyrklaff, M., Neupert, W., and Reichert, A.S. (2009). Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g. J Cell Biol, 2009; ePub 15th June 2009.

Source: Goethe University Frankfurt

Explore further: Key Event in Cell Death Occurs as Single, Quick Event

Related Stories

Key Event in Cell Death Occurs as Single, Quick Event

August 3, 2006

Scientists at St. Jude Children's Research Hospital have demonstrated that a key event during apoptosis (cell suicide) occurs as a single, quick event, rather than as a step-by-step process. Apoptosis eliminates extraneous ...

Key step in the 'puncture' mechanism of cell death revealed

May 12, 2008

A team of medical researchers led by Dr Ruth Kluck at Melbourne’s Walter and Eliza Hall Institute (WEHI) has discovered a key step in the mechanism by which cells destroy themselves. In this process, called “apoptosis”, ...

Immune cells kill foes by disrupting mitochondria 2 ways

May 15, 2008

When killer T cells of the immune system encounter virus-infected or cancer cells, they unload a lethal mix of toxic proteins that trigger the target cells to self-destruct. A new study shows T cells can initiate cellular ...

New clues about mitochondrial 'growth spurts'

March 2, 2009

Mitochondria are restless, continually merging and splitting. But contrary to conventional wisdom, the size of these organelles depends on more than fusion and fission, as Berman et al. show. Mitochondrial growth and degradation ...

Recommended for you

Plastic in 99 percent of seabirds by 2050

August 31, 2015

Researchers from CSIRO and Imperial College London have assessed how widespread the threat of plastic is for the world's seabirds, including albatrosses, shearwaters and penguins, and found the majority of seabird species ...

Researchers unveil DNA-guided 3-D printing of human tissue

August 31, 2015

A UCSF-led team has developed a technique to build tiny models of human tissues, called organoids, more precisely than ever before using a process that turns human cells into a biological equivalent of LEGO bricks. These ...

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(Phys.org)—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.