New mechanism for amyloid beta protein's toxic impact on the Alzheimer's brain

June 24, 2009

Scientists have uncovered a novel mechanism linking soluble amyloid -- protein with the synaptic injury and memory loss associated with Alzheimer's disease (AD). The research, published by Cell Press in the June 25 issue of the journal Neuron, provides critical new insight into disease pathogenesis and reveals signaling molecules that may serve as potential additional therapeutic targets for AD.

Amyloid beta protein plays a major pathogenic role in AD, a devastating characterized by progressive cognitive impairment and memory loss. "Given the mounting evidence that small soluble A-beta assemblies mediate synaptic impairment in AD, elucidating the precise by which this occurs has important implications for treating and preventing the disease," explains senior study author, Dr. Dennis Selkoe from the Center for Neurologic Diseases at Brigham and Women's Hospital and Harvard Medical School.

Dr. Selkoe, Dr. Shaomin Li, and colleagues examined regulation of a cellular communication phenomenon known as long-term synaptic depression (LTD). LTD has been linked with , but a role for A-beta in the regulation of LTD has not been clearly described. The researchers found that soluble A-beta facilitated LTD in the hippocampus, a region of the brain intimately associated with memory. The enhanced synaptic depression induced by soluble A-beta was mediated through a decrease in glutamate recycling at hippocampal synapses.

Excess glutamate, the major excitatory neurotransmitter in the brain, is thought to contribute to the progressive neuronal loss characteristic of AD. The researchers went on to show that A-beta-enhanced LTD was mediated by glutamate receptor activity and that the LTD could be prevented by an extracellular glutamate scavenger system. A very similar enhancement of LTD could be induced by a pharmacological blocker of glutamate reuptake. Importantly, soluble A-beta directly and significantly decreased glutamate uptake by isolated synapses.

"Our findings provide evidence that soluble A-beta from several sources enhances synaptic depression through a novel mechanism involving altered glutamate uptake at hippocampal synapses," concludes Dr. Selkoe. "These results have both mechanistic and therapeutic implications for the initiation of hippocampal synaptic failure in AD and in more subtle forms of age-related A? accumulation." Future studies are needed to determine precisely how soluble A-beta protein physically interferes with transporters at the synapse.

Source: Cell Press (news : web)

Explore further: Mechanism explains calcium abnormalities in Alzheimer's brain

Related Stories

Mechanism explains calcium abnormalities in Alzheimer's brain

June 25, 2008

A new study uncovers a mechanism that directly links mutations that cause early onset Alzheimer's disease (AD) with aberrant calcium signaling. The research, published by Cell Press in the June 26th issue of the journal Neuron, ...

Ionophore reverses Alzheimer's within days in mouse models

July 9, 2008

Scientists report a remarkable improvement in Alzheimer's transgenic mice following treatment with a new drug. The study, published by Cell Press in the July 10th issue of the journal Neuron, provides the first demonstration ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.