Intestinal cells surprisingly active in pursuit of nutrition and defense

June 29, 2009
Intestinal cells release enzyme-laden vesicles into the gut lumen from the tips of their microvilli (red circles) through the action of the motor protein myosin-1a. These lumenal vesicles may function to process nutrients and protect against bacterial infection. Credit: McConnell, R.E., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200902147.

Every cell lining the small intestine bristles with thousands of tightly packed microvilli that project into the gut lumen, forming a brush border that absorbs nutrients and protects the body from intestinal bacteria. In the June 29, 2009 issue of the Journal of Cell Biology, Matthew McConnell, Matthew Tyska, and colleagues now find that microvilli extend their functional reach even further using a molecular motor to send vesicles packed with gut enzymes out into the lumen to get a head start on breaking down their substrates.

Microvilli have traditionally been viewed as passive scaffolds that increase the surface area of the gut wall. The apical plasma membrane tightly wraps around each protrusive bundle of actin, providing more space for nutrient processing and absorption. The motor protein myosin-1a (myo1a) maintains this structure by connecting the plasma membrane to the actin filaments.

In 2007, Tyska and colleagues found that myo1a functions in isolated brush borders to actively move membrane along the length of the microvilli, like a "membrane escalator." To their surprise, at the top of these escalators—the tips of the microvilli—the membrane pinched off to form small vesicles that were released into the surrounding medium. According to Tyska, when they showed their data to gastroenterologists, they immediately asked "Why would brush borders do that? They're wasting perfectly good apical membrane!" Tyska therefore wanted to see if vesicle shedding was a bona fide physiological function for microvilli.

Sure enough, scanning electron micrographs of rat intestines showed protrusions at the tips of microvilli that looked similar to budding vesicles. And a look at the gut's contents revealed vesicles enriched in the brush border intestinal alkaline phosphatase (IAP). The vesicles were packed with classical brush border membrane proteins such as aminopeptidases and sugar-processing enzymes, suggesting that the vesicles were derived from microvilli. The vesicles also contained several proteins such as annexin A13 that bend cell membranes and could form part of the vesicle budding machinery.

One protein definitely involved in vesicle formation is myo1a. Myo1a knockout mice still produce lumenal vesicles but they are irregularly sized and no longer enriched in specific proteins like IAP. Tyska thinks that these knockout vesicles are actually chunks of microvillar that are nonspecifically shed when myo1a isn't present to keep them attached to the actin core.

Returning to the gastroenterologists' question: Why would brush borders do that? McConnell et al. showed that the packaged enzymes were exposed on the vesicles' outer surface and were catalytically active. Releasing the enzymes in vesicles might increase their mixing with substrates in the gut's contents. Tyska is particularly interested in IAP, which has recently been shown to detoxify the bacterial outer-membrane component lipopolysaccharide. Releasing IAP in lumenal vesicles could be an important defense mechanism against intestinal pathogens.

More information: McConnell, R.E., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200902147. www.jcb.org

Source: Rockefeller University (news : web)

Explore further: Molecular motors may speed nutrient processing

Related Stories

Molecular motors may speed nutrient processing

May 30, 2007

Matthew Tyska, Ph.D., recalls being intrigued, from the first day of his postdoctoral fellowship in 1999, with a nearly 30-year-old photograph. It was an electron micrograph that showed the internal structures of an intestinal ...

Finding microscopic motors in the gut

June 28, 2007

Digestion has a previously unsuspected mechanical dimension: Vanderbilt researchers have discovered that the tiny, hair-like protrusions that line the gut are filled with millions of molecular motors that produce streams ...

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.