Genetic code cracked of organisms behind fungal disease

June 15, 2009

Scientists have unlocked the code for the building blocks of fungal organisms which are responsible for mild as well as potentially deadly infections in people.

Cracking the of six species of Candida - the most common cause of fungal infection worldwide - is a major step towards finding new therapies for treating the health problems caused by these organisms.

Candida albicans is perhaps best known to most as it can cause thrush in women and babies, although this is easily treated.

However several Candida species can pose a far more serious threat to people whose immune systems are compromised, leaving them vulnerable to fungal infections.

These include cancer and trauma patients and those who have undergone bone and organ transplants.

Now in a paper published in Nature an international team of scientists - including University of Aberdeen researchers - report that they have cracked and analysed the genetic code of six Candida species.

Professor Neil Gow, Chair in Microbiology at the University of Aberdeen, said: "This is a landmark paper in the field of fungal research.

"Understanding the genome sequences of these Candida species gives us a blueprint for increasing our understanding of the diseases caused by these organisms.

"Some species of Candida can cause serious and life threatening infections in patients whose immune systems are suppressed which makes them more susceptible to fungal infections.

"The mortality rate of someone who has contracted septicaemia caused by Candida is about 30% to 40%.

"While understanding the genetic make-up of Candida does not in itself give us a cure or a new treatment, it does give us a toolbox for tackling the organisms.

"Our findings will help define future fungal studies and also help speed up progress in developing new therapies for combating Candida infections."

Professor Neil Gow, Dr Carol Munro, Dr Carol Munro, Professor Al Brown, Dr Ian Stansfield and Dr Steven Bate were the Aberdeen researchers who were part of the international collaboration that analysed the genome sequencing that was decoded by the Broad Institute of MIT and Harvard.

Their subsequent findings also revealed the relationships of Candida species to each other and discovered why some species seem to have lost the ability to mate.

Source: University of Aberdeen (news : web)

Explore further: Yeast behind potentially deadly infections tackled by multi million pound collaboration

Related Stories

Researchers hone in on new strategy to treat common infection

October 27, 2008

Researchers at Georgetown University Medical Center (GUMC) have successfully tested a genetic strategy designed to improve treatment of human infections caused by the yeast Candida albicans, ranging from diaper rash, vaginitis, ...

Voriconazole: A highly potent treatment for fungal infections

December 16, 2008

The effectiveness of voriconazole in combating fungal infections has been confirmed by a new study to be featured in the International Journal of Antimicrobial Agents, published by Elsevier. Fungal infections can kill people ...

Recommended for you

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

Studies reveal details of error correction in cell division

July 29, 2015

Cell biologists led by Thomas Maresca at the University of Massachusetts Amherst, with collaborators elsewhere, report an advance in understanding the workings of an error correction mechanism that helps cells detect and ...

Researchers discover new type of mycovirus

July 29, 2015

Researchers, led by Dr Robert Coutts, Leverhulme Research Fellow from the School of Life and Medical Sciences at the University of Hertfordshire, and Dr Ioly Kotta-Loizou, Research Associate at Imperial College, have discovered ...

Stressed out plants send animal-like signals

July 29, 2015

University of Adelaide research has shown for the first time that, despite not having a nervous system, plants use signals normally associated with animals when they encounter stress.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.