Toward new drugs that turn genes on and off

June 4, 2009
Scientists found a group of molecules that could provide clues to the development of various diseases. Credit: The American Chemical Society

Scientists in Michigan and California are reporting an advance toward development of a new generation of drugs that treat disease by orchestrating how genes in the body produce proteins involved in arthritis, cancer and a range of other disorders. Acting like an “on-off switch,” the medications might ratchet up the production of proteins in genes working at abnormally low levels or shut off genes producing an abnormal protein linked to disease.

Their report is in the current issue of ACS .

In the study, Anna K. Mapp and colleagues discusses that cause to be active and churn out proteins — so-called transcriptional activators. That’s because because they control a key process known as transcription, in which instructions coded in genes produce proteins. Malfunctions in these activators could lead to altered transcription patterns that lead to disease. For example, variations in the tumor suppressor gene p53 are found in more than half of all human cancers.

Mapp describes discovery of a group of molecules that could be used to help scientists better understand transcription. Known as activator artificial transcriptional activation domains, these small molecules mimic natural activators and could provide insights on how mistakes in gene regulation result in various diseases.

“Evidence suggests that these small molecules mimic the function and mechanism of their natural counterparts and present a framework for the broader development of small molecule transcriptional switches,” Mapp states.

More information:

Source: ACS

Explore further: Newly identified mechanism for silencing genes points to possible anti-cancer strategies

Related Stories

Rewrite the textbooks: Transcription is bidirectional

January 25, 2009

Genes that contain instructions for making proteins make up less than 2% of the human genome. Yet, for unknown reasons, most of our genome is transcribed into RNA. The same is true for many other organisms that are easier ...

Small molecules mimic natural gene regulators

June 3, 2009

( -- In the quest for new approaches to treating and preventing disease, one appealing route involves turning genes on or off at will, directly intervening in ailments such as cancer and diabetes, which result ...

Recommended for you

Organic semiconductors get weird at the edge

October 6, 2015

As the push for tinier and faster electronics continues, a new finding by scientists at the University of British Columbia (UBC) and Monash University could help inform the design of the next generation of cheaper, more efficient ...

New polymer creates safer fuels

October 1, 2015

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact. Researchers ...

Researchers print inside gels to create unique shapes

September 30, 2015

(—A team of researchers at the University of Florida has taken the technique of printing objects inside of a gel a step further by using a highly shear-rate sensitive gel. In their paper published in the journal ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.