Dolphins get a lift from delta wing technology

June 26, 2009

We can only marvel at the way that dolphins, whales and porpoises scythe through water. Their finlike flippers seem perfectly adapted for maximum aquatic agility. However, no one had ever analysed how the animals' flippers interact with water; the hydrodynamic lift that they generate, the drag that they experience or their hydrodynamic efficiency. Laurens Howle and Paul Weber from Duke University teamed up with Mark Murray from the United States Naval Academy and Frank Fish from West Chester University, to find out more about the hydrodynamics of whale and dolphin flippers.

They publish their finding that some dolphins' fins generate lift in the same way as delta wing aircraft on 26 June 2009 in The at .

Using Computer tomography scanning of the fins of seven different species ranging from the slow swimming Amazon River dolphin and pygmy sperm whale to the super-fast striped dolphin, the team made scaled models of the flippers of each species. Then they measured the lift and drag experienced by the flipper at inclinations ranging from -45deg. to +45deg. in a flow tunnel running at a speed that would have been the equivalent of 2m/s for the full scale fin.

Comparing the lift and drag coefficients that the team calculated for each flipper at different inclination angles, they found that the flippers behave like modern engineered aerofoils. Defining the flippers' shapes as triangular, swept pointed or swept rounded, the team used of the fluid flows around the flippers and found that sweptback flippers generate lift like modern delta wing aircraft. Calculating the flippers' efficiencies, the team found that the bottle nose dolphin's triangular flippers are the most efficient while the harbour porpoise and Atlantic white-sided dolphin's fins were the least efficient.

Commenting that environmental and performance factors probably play a significant role in the evolution of dolphin and whale flipper shapes and their hydrodynamics, Howle and his colleagues are keen to find out more about the link between the flippers' performances and the environment that whales and dolphins negotiate on a daily basis.

More information: Weber, P. W., Howle, L. E., Murray, M. M. and Fish, F. E. (2009). Lift and drag performance of odontocete cetacean flippers. J. Exp. Biol. 212, 2149-2158.

Source: The Company of Biologists (news : web)

Explore further: 'Flipper' trainer against dolphin tourism

Related Stories

Whales and dolphins influence new wind turbine design

July 8, 2008

Sea creatures have evolved over millions of years to maximise efficiency of movement through water; humans have been trying to perfect streamlined designs for barely a century. So shouldn't we be taking more notice of the ...

Cost of hatchling turtles' dash for freedom

December 12, 2008

A newly hatched sea turtle's first swim is the most critical of its life. Having run the gauntlet of air and land predators to make it to the sea, the tiny voyager must also evade hungry fish patrolling the beaches in its ...

Recommended for you

'Hog-nosed rat' discovered in Indonesia

October 6, 2015

Researchers working in Indonesia have discovered a new species of mammal called the hog-nosed rat, aptly named after its features, that scientists said they had never been seen before.

Ancestors of land plants were wired to make the leap to shore

October 5, 2015

When the algal ancestor of modern land plants first succeeded in making the transition from aquatic environments to an inhospitable shore 450 million years ago, it changed the world by dramatically altering climate and setting ...

Stress in adolescence prepares rats for future challenges

October 5, 2015

Rats exposed to frequent physical, social, and predatory stress during adolescence solved problems and foraged more efficiently under high-threat conditions in adulthood compared with rats that developed without stress, according ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.