Researchers find how a common genetic mutation makes cancer radiation resistant

Jun 10, 2009

( -- Many cancerous tumors possess a genetic mutation that disables a tumor suppressor called PTEN. Now researchers at Washington University School of Medicine in St. Louis have shown why inactivation of PTEN allows tumors to resist radiation therapy.

The PTEN gene produces a protein found in almost all tissues in the body. This protein acts as a tumor suppressor by preventing cells from growing and dividing too rapidly. Mutations in PTEN are frequently found in and endometrial cancer, melanoma and certain aggressive brain tumors.

Tumors with PTEN mutations are often resistant to radiation therapy, and Tej K. Pandita, Ph.D., a researcher with the Siteman Cancer Center at Washington University School of Medicine and Barnes-Jewish Hospital, and his colleagues have been trying to find out why. That information could enable researchers to develop drugs that overcome that resistance and increase the effectiveness of radiation treatments.

In an article to be published in the journal , they demonstrate that PTEN-deficient cells have defective checkpoints. As cells grow and divide, they pass through several phases. Checkpoints operate during each phase and assess whether a cell is healthy enough to continue growing and dividing. If not - for example, if there is damage to genetic material resulting from radiation treatments — signals from checkpoints should tell the cell to wait until repairs are made or should induce the cell to die.

The finding that checkpoints are affected in PTEN-deficient cells is contrary to some previous research, which had suggested instead that cells with PTEN mutations had defective DNA repair mechanisms. But Pandita showed that DNA repair is independent of PTEN function in tumor cells grown in the laboratory. That indicated that defective DNA repair is not the cause of the unstable genomes frequently seen in PTEN-deficient and not the explanation for radiation resistance in these tumors.

"The defective checkpoints contribute to radioresistance," says Pandita, associate professor of radiation oncology and of genetics. "When a cell gets damaged by radiation, normally checkpoints will make it stop growing to repair the damage. If the checkpoints are working but the cell has a defective DNA repair system, the cell will be radiosensitive. But if the checkpoints don't operate, the cell can bypass DNA repair and continue to grow and divide. Then the cells are radioresistant."

The results indicate that to increase radiation sensitivity in tumors with PTEN mutations it will be necessary to develop drugs that correct for the faulty checkpoint processes, Pandita says. Work continues in the laboratory to further unravel the details of the checkpoint system and its role in radiation therapy resistance.

Gupta A, Yang Q, Pandita RK, Hunt CR, Xiang T, Misri S, Zeng S, Pagan J. Jeffrey J, Puc J, Kumar R, Feng Z, Powell SN, Bhat A, Yaguchi T, Wadhwa R, Kaul SC, Parsons R, Khanna KK, Pandita TK. Cell cycle checkpoint defects contribute to genomic instability in PTEN deficient independent of DNA repair. Cell Cycle. 2009 July 15;14(8):1-13.

Source: Washington University in St. Louis (news : web)

Explore further: New research leads to FDA approval of first drug to treat radiation sickness

Related Stories

Gene helps protect tumor suppressor in breast cancer

Apr 06, 2009

Scientists at The University of Texas M. D. Anderson Cancer Center have discovered a gene that protects PTEN, a major tumor-suppressor that is reduced but rarely mutated in about half of all breast cancers.

Scientists document the development of cancer stem cells

Jan 22, 2007

Xi He, M.D., Research Specialist II, and Linheng Li, Ph.D., Associate Investigator, are the first and last authors, respectively, on a new publication that clarifies how normal stem cells become cancer stem cells and how ...

Scientists pull protein's tail to curtail cancer

Dec 31, 2008

( -- When researchers look inside human cancer cells for the whereabouts of an important tumor-suppressor, they often catch the protein playing hooky, lolling around in cellular broth instead of muscling its way ...

Recommended for you

Vortex device makes for better cancer treatments

11 hours ago

A South Australian invention, responsible for unboiling an egg, has been used to produce a four-fold increase in efficacy of carboplatin, a commonly used drug for ovarian, lung and other cancer. ...

Using healthy skin to identify cancer's origins

May 21, 2015

Normal skin contains an unexpectedly high number of cancer-associated mutations, according to a study published in Science. The findings illuminate the first steps cells take towards becoming a cancer and de ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.