Theory shows mechanism behind delayed development of antibiotic resistance

May 5, 2009

Inhibiting the "drug efflux pumps" in bacteria, which function as their defence mechanisms against antibiotics, can mask the effect of mutations that have led to resistance in the form of low-affinity drug binding to target molecules in the cell. This is shown by researchers at Uppsala University in a new study that can provide clues to how the development of resistance to antibiotics in bacteria can be delayed.

The introduction of as drugs in the treatment of bacterial infections in the post-WWII years was a revolutionized medicine, and dramatically improved the health condition on a global scale. Now, 60 years later, growing antibiotic resistance among has heavily depleted the arsenal of entailed effective antibiotic drugs.

Antibiotics function by attacking vital molecules in . Bacteria, in turn, protect themselves either by using "drug efflux pumps" for antibiotics or through mutations that reduce the binding of the antibiotic to its target molecules inside the bacteria cell. Through these changes, bacteria develop resistance to antibiotics.

The new study is published in the journal in the US. Professor Mľns Ehrenberg's research team at Uppsala University has shown experimentally and theoretically explained how the inhibition of these drug efflux pumps can completely mask the resistance effect of mutations that reduce the affinity of antibiotics to their target molecules in the bacteria cell. The effect of the mutations is entirely hidden when the pumps are unable to remove the antibiotic sufficiently quickly in relation to the dilution of the antibiotic through cell growth and cell division.

"This masking effect can provide clues to how the development of resistance to antibiotics in bacteria can be delayed," says Mľns Ehrenberg.

The study introduces a new tool for understanding and delaying the development of resistance in bacteria.

Source: Uppsala University (news : web)

Explore further: Study finds antibiotic resistance in poultry even when antibiotics were not used

Related Stories

Resistant gut bacteria will not go away by themselves

June 19, 2007

E. coli bacteria that have developed resistance to antibiotics will probably still be around even if we stop using antibiotics, as these strains have the same good chance as other bacteria of continuing to colonise the gut, ...

The structure of resistance

February 22, 2008

A team of scientists from the University Paris Descartes has solved the structure of two proteins that allow bacteria to gain resistance to multiple types of antibiotics, according to a report in EMBO reports this month. ...

Scientists discover how some bacteria survive antibiotics

April 30, 2008

Researchers at the University of Illinois at Chicago have discovered how some bacteria can survive antibiotic treatment by turning on resistance mechanisms when exposed to the drugs. The findings, published in the April 24 ...

Nanotechnology used to probe effectiveness of antibiotics

February 4, 2009

A group of researchers led by scientists from the London Centre for Nanotechnology, in collaboration with a University of Queensland researcher, have discovered a way of using tiny nano-probes to help understand how an antibiotic ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.