Sea Urchins' Digging Teeth are Designed to Stay Sharp

May 4, 2009

(PhysOrg.com) -- Sea urchins dig themselves hiding holes in the limestone of the ocean floor using teeth that don’t go blunt. Weizmann Institute scientists have now revealed their secrets, which might give engineers insights into creating ever-sharp tools or mechanical parts.

The urchins dig holes to fit their globular bodies using their five teeth, which, like those of rodents, are ground down at the tip but continue to grow on the other end throughout the animals’ lives. The amazing part, however, is that the urchins’ teeth, which need to be harder and stronger than the rocky limestone being dug out, are themselves made almost entirely of calcite - the same calcite that makes up much of the limestone. How is this possible?

In a series of studies spanning more than a decade, Profs. Steve Weiner and Lia Addadi of Weizmann’s Department have discovered that the urchins’ secret lies in a combination of ingenious design strategies. The latest of these studies, conducted with postdoctoral fellow Yurong Ma and graduate student Yael Politi and in collaboration with Prof. Pupa Gilbert and Dr. Rebecca Metzler of the University of Wisconsin; Drs. Barbara Aichmayer, Oskar Paris, and Peter Fratzl from the Max Planck Institute of and Interfaces in Potsdam, Germany; and Dr. Anders Meibom from the Muséum National D’Histoire Naturelle in Paris, France, was reported recently in the Proceedings of the National Academy of Sciences (PNAS).

The scientists found that the sea urchins’ teeth contain crystals of magnesium calcite, which are smaller, harder, and denser than those of pure calcite; they are concentrated at the grinding tip of the tooth, particularly in the tip’s center, where the most force is being exerted in the course of grinding. What holds these crystals at the center of the tip is a matrix of larger and softer calcite crystals. While in most such materials a matrix of hard fibers contains a softer filling, the reverse is true for the urchins’ tooth: a matrix of relatively soft calcite fibers holds the harder magnesium calcite crystals, which allows these crystals to spread over the entire surface of the tooth. The presence of magnesium calcite crystals acts like sandpaper that helps to grind the rock down.

In the latest study, the researchers used x-ray photoelectron emission spectromicroscopy and other high-resolution imaging methods to uncover yet another amazing structural feature of sea urchin tooth design. They found that all the crystalline elements that make up the tooth are aligned in two different arrays, and that these arrays are “interdigitated,” or interlocked like the fingers of folded hands, just at the tip of the tooth, where most of the wear occurs. The scientists believe that interlocking produces a notched, serrated ridge resembling that of a carpenter’s file. This ridge is self-sharpening: as the is being ground down, the crystalline layers break in such a way that the ridge always stays corrugated.

More information: For the scientific paper, please see: www.pnas.org/content/106/15/6048.full?sid=39c9feb7-911b-4679-bc95-f752b74e0dcd

Provided by Weizmann Institute of Science (news : web)

Explore further: Teeth: a future renewable natural resource?

Related Stories

Teeth: a future renewable natural resource?

November 21, 2006

Most vertebrates have continuous tooth generation, meaning that lost teeth are replaced with new teeth. Mammals, however, including humans, have teeth that are generally only replaced once, when milk teeth are replaced with ...

Norwegian Tooth Bank seeks milk teeth from 100,000 children

March 31, 2008

The Norwegian Tooth Bank is requesting milk teeth from 100 000 children in Norway and could become the biggest tooth bank in the world. Milk teeth can give unique information about environmental influences and nutrition ...

Researchers Crack the Mystery of Resilient Teeth

April 17, 2009

(PhysOrg.com) -- After years of biting and chewing, how are human teeth able to remain intact and functional? A team of researchers from The George Washington University and other international scholars have discovered several ...

Recommended for you

Plastic in 99 percent of seabirds by 2050

August 31, 2015

Researchers from CSIRO and Imperial College London have assessed how widespread the threat of plastic is for the world's seabirds, including albatrosses, shearwaters and penguins, and found the majority of seabird species ...

Researchers unveil DNA-guided 3-D printing of human tissue

August 31, 2015

A UCSF-led team has developed a technique to build tiny models of human tissues, called organoids, more precisely than ever before using a process that turns human cells into a biological equivalent of LEGO bricks. These ...

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(Phys.org)—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.