New Gas Sensor Based on Multiwalled Carbon Nanotubes

May 27, 2009
Hybrid sensor fabrication process: (top) SEM image of a few MWCNTs spanning across two neighboring Au fingers of the interdigitated electrode; (bottom) HRTEM image of a MWCNT uniformly coated with SnO nanocrystals.

Argonne Center for Nanoscale Materials staff in the Nanofabrication & Devices Group together with collaborative users from the University of Wisconsin-Milwaukee have fabricated a miniaturized gas sensor using hybrid nanostructures consisting of SnO2 nanocrystals supported on multiwalled carbon nanotubes (MWCNTs).

In contrast to the high-temperature operation required for SnO2 nanocrystals alone, and to the insensitivity towards H2 and CO for CNTs alone, the hybrid sensor exhibits room-temperature sensing capability when exposed to low-concentration gases such as NO2, H2, and CO. The performance of the hybrid nanostructure sensor is attributed to the effective between SnO2 nanocrystals and MWCNTs and to the increase in the specific surface area.

The hybrid platform as a sensing element provides an opportunity to engineer sensing devices with quantum-mechanical attributes due to the electron transfer. The nanomaterials employed are affordable, and the technique is simple and compatible with existing microfabrication capabilities; the latter, in turn, facilitates a scale-up process. This new sensing scheme will be instrumental for the development of new based on hybrid nanostructures.

More information: "Room-Temperature Gas Sensing Based on Electron Transfer between Discrete Tin Oxide Nanocrystals and Multiwalled Carbon Nanotubes," G. Lu, L.E. Ocola, and J. Chen, Adv. Mater., 21, 1-5, 2009.

Provided by Argonne National Laboratory (news : web)

Explore further: Engineers Develop Biowarfare Sensing Elements That Permit Mass Production of Highly Sensitive Nerve-Gas Detectors

Related Stories

Super Sensitive Gas Detector Goes Down the Nanotubes

January 13, 2009

When cells are under stress, they blow off steam by releasing minute amounts of nitrogen oxides and other toxic gases. In a recent paper,* researchers at the National Institute of Standards and Technology described a new ...

Recommended for you

Personal cooling units on the horizon

April 28, 2016

Firefighters entering burning buildings, athletes competing in the broiling sun and workers in foundries may eventually be able to carry their own, lightweight cooling units with them, thanks to a nanowire array that cools, ...

Little ANTs: Researchers build the world's tiniest engine

May 2, 2016

Researchers have developed the world's tiniest engine - just a few billionths of a metre in size - which uses light to power itself. The nanoscale engine, developed by researchers at the University of Cambridge, could form ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

materialsdave
not rated yet May 28, 2009
Here's a link to the original article: http://dx.doi.org...00803536

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.