Andes Mountains Are Older Than Previously Believed

May 15, 2009 By Beth King
Sediments that gather at the base of mountains provide important clues about how and when the mountains were formed. Credit: Carlos Jaramillo, STRI

(PhysOrg.com) -- The geologic faults responsible for the rise of the eastern Andes mountains in Colombia became active 25 million years ago—18 million years before the previously accepted start date for the Andes’ rise, according to researchers at the Smithsonian Tropical Research Institute in Panama, the University of Potsdam in Germany and Ecopetrol in Colombia.

“No one had ever dated mountain-building events in the eastern range of the Colombian Andes,” said Mauricio Parra, a former doctoral candidate at the University of Potsdam (now a postdoctoral fellow with the University of Texas) and lead author. “This eastern sector of America’s backbone turned out to be far more ancient here than in the central Andes, where the eastern ranges probably began to form only about 10 million years ago.”

The team integrated new geologic maps that illustrate tectonic thrusting and faulting, information about the origins and movements of sediments and the location and age of plant pollen in the sediments, as well as zircon-fission track analysis to provide an unusually thorough description of basin and range formation.

As mountain ranges rise, rainfall and erosion wash minerals like zircon into adjacent basins, where they accumulate to form sedimentary rocks. Zircon contains traces of uranium. As the uranium decays, trails of accumulate in the zircon crystals. At high temperatures, fission tracks disappear like the mark of a knife disappears from a soft block of butter. By counting the microscopic fission tracks in zircon minerals, researchers can tell how long ago how long ago rocks began to be uplifted, or exhumed toward the earth surface.

Classification of nearly 17,000 pollen grains made it possible to clearly delimit the age of sedimentary layers.

The use of these complementary techniques led the team to postulate that the rapid advance of a sinking wedge of material as part of tectonic events 31 million years ago may have set the stage for the subsequent rise of the range.

“The date that mountain building began is critical to those of us who want to understand the movement of ancient animals and plants across the landscape and to engineers looking for oil and gas,” said Carlos Jaramillo, staff scientist from STRI. “We are still trying to put together a big tectonic jigsaw puzzle to figure out how this part of the world formed.”

This work was published in the Geological Society of America Bulletin in April 2009.

More information: Mauricio Parra, Andres Mora, Carlos Jaramillo, Manfred R. Strecker, Edward R. Sobel, Luis Quiroz, Milton Rueda and Vladimir Torres. Eastern Orogenic wedge advance in the northern Andes: Evidence from the Oligocene-Miocene sedimentary record of the Medina Basin, Eastern Cordillera, Colombia. Geological Society of America Bulletin. 2009: 121:780-800. doi:10.1130/B26257.1

Provided by Smithsonian Tropical Research Institution

Explore further: Australian discovery solves mystery of the Andes

Related Stories

Australian discovery solves mystery of the Andes

March 14, 2007

A research team led by an ANU scientist has solved the mystery behind the formation of the Andes by discovering how the jostling of tectonic plate boundaries affects geological formations.

Origin of the Blue Mountains studied

October 30, 2007

A U.S. study suggests northern Oregon's Blue Mountains may have originated from the Klamath Mountains of southern Oregon and the Sierra Nevada of California.

Recommended for you

A cataclysmic event of a certain age

July 27, 2015

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.

'Carbon sink' detected underneath world's deserts

July 28, 2015

The world's deserts may be storing some of the climate-changing carbon dioxide emitted by human activities, a new study suggests. Massive aquifers underneath deserts could hold more carbon than all the plants on land, according ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

blackle4ps3
1 / 5 (1) May 16, 2009
the earth was hit by moon , rested at south pole then went into orbit asteroid belt was part of earth

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.