Unzipping Carbon Nanotubes Can Make Graphene Ribbons

Apr 20, 2009 by Lisa Zyga weblog
unzipping nanotubes
By "unzipping" carbon nanotubes, researchers can make graphene ribbons. Image credit: Liying Jiao, Li Zhang and Hongjie Dai.

(PhysOrg.com) -- By "unzipping" carbon nanotubes, researchers have shown how to make flat graphene ribbons. Graphene, which is a one-atom-thick sheet of carbon that looks like chicken wire, has unique electrical properties that could have many future electronics applications. However, one of the biggest challenges researchers currently face is producing graphene in large quantities.

Recently, two research groups have demonstrated that unzipping carbon nanotubes can produce graphene ribbons in a variety of widths.

In the first group, scientists at Rice University in Houston led by James Tour used sulphuric acid and an oxidizing agent to chemically create a hole in the carbon nanotubes. The hole expanded along the side of the nanotube, unzipping the tube to form a flat graphene ribbon. The width of the graphene ribbon depended on the diameter of the nanotubes. In their experiments, the researchers used multiwalled nanotubes with diameters ranging from 40 to 80 nanometers, resulting in ribbons with widths from 100 to 250 nanometers, and about 4 micrometers long.

The researchers suggest that this type of graphene ribbon could be used for conductive or semiconducting thin films, and possibly as an inexpensive substitute for monocrystalline silicon in photovoltaics. However, the method makes it difficult to accurately place a single ribbon on a substrate, which will make it challenging to fabricate many devices.

The second group, which consisted of Stanford researchers led by Hongiie Dai, tried a different approach. They placed nanotubes on a , coated them with a polymer, and baked them. Then they peeled off the polymer, which the nanotubes were embedded in. Exposing this polymer-nanotube material to a 10-watt argon plasma for 10 seconds cut some of the exposed nanotubes into graphene ribbons. Longer exposures could cut nanotubes that were further embedded in the polymer. After dissolving the polymer, only the graphene ribbons remained. This baking and cutting method produced graphene ribbons with relatively clean edges and few defects, which optimizes their conductive properties.

While both methods provide new ways of producing graphene, more work needs to be done to achieve better control of the widths, edges, and uniformity. Finding a practical way to form graphene is necessary for many future applications, including high-speed transistors, sensors, and even scaffolding for tissue regeneration.

© 2009 PhysOrg.com

Explore further: Graphene and diamonds prove a slippery combination

Related Stories

Nano World: Composites with nano-graphite

Jul 24, 2006

Strong, lightweight plastic-like composites made with highly electrically conductive sheets of carbon just one atom thick could find use in electronics and protect aircraft from lightning strikes, experts told UPI's Nano ...

Small graphene wires may be poor conductors

Feb 15, 2008

Ohio University physicists researching electron properties in graphene ribbons have found that narrow wires made of this material may not be good conductors.

Rice researchers unzip the future

Apr 15, 2009

Scientists at Rice University have found a simple way to create basic elements for aircraft, flat-screen TVs, electronics and other products that incorporate sheets of tough, electrically conductive material.

AMO Manufactures First Graphene Transistors

Feb 08, 2007

In the scope of his innovative project ALEGRA the AMO nanoelectronics group of Dr. Max Lemme was able to manufacture top-gated transistor-like field-effect devices from monolayer graphene.

Recommended for you

Graphene and diamonds prove a slippery combination

May 25, 2015

Scientists at the U.S. Department of Energy's Argonne National Laboratory have found a way to use tiny diamonds and graphene to give friction the slip, creating a new material combination that demonstrates ...

Artificial muscles get graphene boost

May 22, 2015

Researchers in South Korea have developed an electrode consisting of a single-atom-thick layer of carbon to help make more durable artificial muscles.

How to make continuous rolls of graphene

May 21, 2015

Graphene is a material with a host of potential applications, including in flexible light sources, solar panels that could be integrated into windows, and membranes to desalinate and purify water. But all ...

Carbon nanothreads from compressed benzene

May 20, 2015

A new carbon nanomaterial – the thinnest possible one-dimensional thread that still retains a diamond-like structure – was created by the controlled, slow compression and decompression of benzene. The ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Apr 20, 2009
What's wrong with hummer's method?????
not rated yet Apr 26, 2009
Considering 'Carbon' seems like such a bad word these days, I find it ironic that, after reading the constant barage of nanotube articles that pour out of the research labs of the world, it seems as though in the future we will be litterally BATHING in carbon nanotubes and their derivatives: we'll have them in our bones, on our teeth, in our hair, in our clothes, we'll build composite materials with them, electronics, solar panels, space elevators, and who knows, maybe, one day, we'll even eat them!

"Carbon Nanotubes are People!"
2.3 / 5 (3) Apr 29, 2009
Buckyfood for buckypeople!!!!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.