New strategy improves stem cell recruitment, heart function and survival after heart injury

April 2, 2009

A new study in mice shows that a dual therapy can lead to generation of new blood vessels and improved cardiac function following a heart attack. The research, published by Cell Press in the April 3rd issue of the journal Cell Stem Cell, provides an explanation for the ineffectiveness of current stem-cell-mobilizing therapies and may drive design of future regenerative therapies for the heart.

Stem-cell-based therapies are an attractive option for the treatment of heart damage after a , also known as myocardial infarction (MI). However, although animal studies using derived from the bone marrow have elicited some improvement in cardiac function, human trials have not been as successful. "Modern approaches have to focus on the process of cardiac homing to improve the clinical outcome of stem cell therapies," explains senior study author, Dr. Wolfgang-Michael Franz from Ludwig-Maximilians University.

The stromal-cell-derived factor, type I (SDF-1) is the main chemical that guides stem cells to home in on damaged heart tissue. Because SDF-1 is inactivated by CD26/dipeptidylpeptidase IV (DPP-IV), endogenous stem cell localization to the heart is not optimal. The researchers used genetic or pharmacologic inhibitors of CD26/DPP-IV to slow degradation of SDF-1 in mice with surgically induced MI. They also treated the mice with granulocyte colony stimulating factor (GCSF), a commonly used drug that mobilizes multiple stem cell populations from the bone marrow to the blood.

The researchers found that genetic or pharmacologic inhibition of CD26/DPP-IV combined with G-CSF treatment decreased DPP-IV and stabilized activated SDF-1 in the heart, thereby enhancing the recruitment of circulating blood forming precursor cells, or EPCs (endothelial progenitors) to this organ. Further, the combined treatment increased formation of new blood vessels and improved both survival and cardiac function after MI.

The results represent the first experimental evidence that inhibition of DPP-IV combined with G-CSF enhances cardiovascular regeneration. "Our findings may contribute essential new aspects for design of future stem cell trials, since the key issue of all therapeutic stem cell approaches emerges to be the process of cardiac homing," says Dr. Franz. "We propose the use of combined DPP-IV inhibition and G-CSF application as a new therapeutic concept for future stem cell trials."

Source: Cell Press (news : web)

Explore further: Molecule dictates how stem cells travel

Related Stories

Molecule dictates how stem cells travel

January 14, 2006

U.S. researchers have defined a molecule that dictates how blood stem cells travel to the bone marrow and establish blood and immune cell production.

Heart derived stem cells develop into heart muscle

April 23, 2008

Dutch researchers at University Medical Center Utrecht and the Hubrecht Institute have succeeded in growing large numbers of stem cells from adult human hearts into new heart muscle cells. A breakthrough in stem cell research. ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.