Stanford scientists turn adult skin cells into muscle and vice versa

April 30, 2009

In a study featured on the cover of the May issue of The FASEB Journal, researchers describe how they are able to reprogram human adult skin cells into other cell types in order to decipher the elusive mechanisms underlying reprogramming. To demonstrate their point, they transformed human skin cells into mouse muscle cells and vice versa. This research shows that by understanding the regulation of cell specialization it may be possible to convert one cell type into another, eventually bypassing stem cells.

"Regenerative medicine provides hope of novel and powerful treatments for many diseases, but depends on the availability of cells with specific characteristics to replace those that are lost or dysfunctional," said Helen M. Blau, Ph.D., the senior scientist involved in the study, Associate Editor of The FASEB Journal, Member of the Stem Cell Institute, and Director of the Baxter Laboratory in Genetic Pharmacology at Stanford. "We show here that mature cells can be directly reprogrammed to generate those necessary cells, providing another way besides embryonic stem cells or induced pluripotent stem cells of overcoming this important bottleneck to restoring tissue function."

The Stanford scientists sought to transform one specialized adult cell from one species into a different specialized adult cell of another species. To do this, they first used a chemical treatment to fuse skin and muscle cells together, producing cells that had nuclei from cells and mouse . By being encapsulated within the same cell wall, the human and mouse muscle nuclei could now "talk" to one another via chemical signals. Then, the scientists looked at the genes expressed from the human skin nuclei and mouse muscle nuclei. (This was possible because one cell type was human and the other was mouse, so the genes could be distinguished based on species differences.) After several experiments, they were able to induce the human skin nuclei to produce mouse muscle genes and induce the muscle nuclei to produce human skin genes—effectively transforming the cell from one type to the other.

"Reprogramming mature cells will likely complement the use of in regenerating tissues," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "By elucidating the regulators of reprogramming, as the Stanford group is doing, it may be possible to generate replacement cells in cases where are not present or not appropriate."

Source: Federation of American Societies for Experimental Biology (news : web)

Explore further: Study: Skin cells turned into stem cells

Related Stories

Study: Skin cells turned into stem cells

August 22, 2005

The controversy over embryonic stem cell research may become moot with a procedure that turns skin cells into what appear to be embryonic stem cells.

Recommended for you

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...

How cells 'climb' to build fruit fly tracheas

November 25, 2015

Fruit fly windpipes are much more like human blood vessels than the entryway to human lungs. To create that intricate network, fly embryonic cells must sprout "fingers" and crawl into place. Now researchers at The Johns Hopkins ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Apr 30, 2009
If all cells are interchangable and totipotent it might be possible to regenerate a finger or a hand if it was cut off.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.