Researchers make significant strides in identifying cause of bacterial infections

April 22, 2009

Several bacterial pathogens use toxins to manipulate human host cells, ultimately disturbing cellular signal transduction. Until now, however, scientists have been able to track down only a few of the proteins that interact with bacterial toxins in infected human cells.

Now, researchers of the Max Planck Institute of Biochemistry in Martinsried and the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch in Germany have identified 39 interaction partners of these toxins, using novel technology which allowed them to screen for large numbers of proteins simultaneously (Cell Host & Microbe, Vol. 5, Issue 4, 397-403).

Many bacteria inject toxins into human cells using a secretion system that resembles a molecular syringe. Within the host cell, some of these toxins are activated in such a way that they can manipulate important cellular signaling pathways. In healthy cells, these signals serve to regulate metabolism or cell division, among other things. By manipulating the signals, bacteria can abuse the cell machinery of the human host in order to spread and survive.

Applying a method developed by Professor Matthias Mann of the MPI, the scientists succeeded for the first time in systematically investigating the cellular target sites of the bacterial toxins. "Surprisingly, the toxins are not optimally adapted to the structures of human proteins," Dr. Matthias Selbach of MDC explained. While binding relatively weakly to individual human proteins, they are able to influence several different proteins simultaneously. "A single bacterial toxin seems to function like a master key that can access different host cell proteins in parallel", Dr. Selbach said. "Perhaps it is due to this strategy that bacteria are able to attack very different and, thus, to increase their survival chances in the host."

Dr. Selbach hopes that these basic research findings will help to improve the treatment of bacterial infections in the future. Instead of nonspecific antibiotic therapy, new drugs could target the signaling mechanisms which are disrupted by the bacterial toxins.

Source: Helmholtz Association of German Research Centres (news : web)

Explore further: A new understanding of how cells defend themselves against bacterial pore-forming toxins

Related Stories

Recommended for you

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Insect DNA extracted, sequenced from black widow spider web

November 25, 2015

Scientists extracted DNA from spider webs to identify the web's spider architect and the prey that crossed it, according to this proof-of-concept study published November 25, 2015 in the open-access journal PLOS ONE by Charles ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.