'Squeezing' light into quantum dots

April 1, 2009 By Miranda Marquit feature

(PhysOrg.com) -- “Quantum wells have been instrumental in telecommunications, enabling light amplification,” Patanjali Kambhampati tells PhysOrg.com, “but theory has suggested that a very small - colloidal - quantum dot could amplify light even better than a quantum well. There have been problems, however, in getting lasers to work properly with colloidal quantum dots, so focus has shifted to other types of structures.”

Now, though, that view has changed. Kambhampati says that he and his colleagues at McGill University in Montreal, Quebec, Canada have figured out how to train lasers to properly drive a quantum dot so that is in line with theories developed years ago. Ryan Cooney, Samuel Sewall, D.M. Sagar and Kambhampati present the results of their experiment in : “Gain Control in Semiconductor via State-Resolved Optical Pumping.”

“We figured that if you took the quantum dot that most had given up on,” continues Kambhampati, “that we could figure out why it wasn’t working as predicted, and try to determine what went wrong. We found out that it was all in the way that experiments were done. By virtue of the available driving lasers, previous experiments were coincidentally done under conditions that were actually best for blocking the useful amplification process. Quantum dots may actually be more useful for light amplification than previously imagined. They have the potential to be very powerful.”

Kambhampati and his peers discovered that the clue to getting the quantum dots to properly amplify light was in the color of the light used to power the dot. “Each quantum dot is different,” Kambhampati explains. “Everything absorbs different colors of light, and that is true of quantum dots. We found that you have to know which colors works for which dots. Certain colors will produce amplification as theoretically predicted. The color of the laser being used to pump the dot is one of the most important factors.”

Once you know that information, it is possible to use the laser to drive the quantum dot appropriately. The Montreal group “trained” their lasers to find the correct color in order to pump the quantum dot in such a manner as to amplify the light. In this manner, they were able to stimulate emission in quantum dots using specific interactions. The way that these quantum dots are pumped, “squeezing” light into the box-like structure, makes a big difference in the output seen.

Even though Kambhampati can see uses for such light amplifiers down the road - especially in terms of fiber optics and long-distance telecommunications, he acknowledges that there are some fairly significant hurdles to overcome. The first problem is that right now the lasers used to drive the dots are prohibitively expensive for commercial use. “Telecom companies don’t have the same scientific lasers that we have to produce different colors. The eventual goal is to be able to make small, cheap practical lasers that can be used commercially.” He says that there are already efforts underway to figure out how to fine tune lasers to work in this manner, but “sometimes there is a long path from science to engineering to manufacturing.”

Kambhampati remains hopeful, however. And he also points out that there are some other interesting things to learn on a fundamental from this experiment. “We saw some things that no one has seen before - things not seen in a quantum well.” In addition to long-term commercial uses, it is possible that this experiment could help other investigations dealing with extremely short pulses, or that require an efficient white light source.

“Really, this is just the beginning. A number of interesting ideas, fundamentally and practically, may come out of this ability to control the output of a quantum dot.”

More information: Ryan R. Cooney, Samuel L. Sewall, D.M. Sagar, and Patanjali Kambhampati, “Gain Control in Semiconductor Quantum Dots via State-Resolved Optical Pumping.” Physical Review Letters (2009). Available online: link.aps.org/doi/10.1103/PhysRevLett.102.127404 .

Copyright 2009 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Quantum dots as midinfrared emitters

Related Stories

Quantum dots as midinfrared emitters

February 23, 2009

(PhysOrg.com) -- “People are interested in the mid-infrared,” Dan Wasserman tells PhysOrg.com. Infrared light has a wavelength longer than visible light, and many molecules have numerous very strong optical resonances ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Apr 02, 2009
Detection devices are those built into our bodies. Modifying them is too risky!
4 / 5 (1) Apr 06, 2009
It sounds like one application could be a collection of many sized such quantum dots to maybe make a simple laser frequency indicator, dot 154 giving gain=978 NM, for instance, dot 236 lit up says the laser illuminating it is at 1055 NM, something like that.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.