Mouse model provides a new tool for investigators of human developmental disorder

April 21, 2009

Wolf-Hirschhorn Syndrome (WHS) is a human disease caused by spontaneous genetic deletions. Children born with WHS have a characteristic set of facial features, including a wide flat nose bridge, downturned mouth, high forehead, and highly arched eyebrows. Other symptoms associated with this disease include heart defects, seizures, mental retardation, and skeletal abnormalities, and the severity of these symptoms varies between individual WHS patients.

While it was known that WHS is related to a genetic deletion in chromosome 4, the specific gene or genes affected were unknown. Now, a study by scientists at the European Molecular Biology Laboratory demonstrates that a gene called Fgfrl1 (Fibroblast growth factor receptor-like 1) plays a key role in WHS.

This report published in Disease Models & Mechanisms (DMM), dmm.biologists.org describes how they modify the Fgrfrl1 gene so that it loses function, then express the gene in . Fgfrl1 in humans is located on the short arm of chromosome 4 and mice born with the modified Fgfrl1 gene have a variety of physical features that are similar to characteristics seen in WHS patients. For example, the mice are born with due to thickening of the cardiac valves, and they have abnormal facial and skeletal structures compared to normal mice. The mutant mice also have deformities in throat cartilage structures, which may provide insight to the swallowing and speaking difficulties experienced by many WHS patients.

This mouse model of WHS provides a valuable new tool for researchers studying this developmental disorder. It provides a new avenue for molecular research through study of Fgrf1 function, but also allows scientists to understand how structural defects might contribute to WHS symptoms, as is the case in the and swallowing difficulties.

The report, "Multiple congenital malformations of Wolf-Hirschhorn syndrome are recapitulated in Fgfrl1 null mice" was written by Catarina Catela, Daniel Bilbao-Cortes, Esfir Slonimsky, Paschalis Kratsios, Nadia Rosenthal and Pascal te Welscher of the European Molecular Biology Laboratory in Monterotondo, Italy. The report is published in the May/June issue of Disease Models & Mechanisms (DMM), a research journal published by The Company of Biologists, a non-profit based in Cambridge, UK.

Source: The Company of Biologists (news : web)

Explore further: Anything but modest: The mouse continues to contribute to humankind

Related Stories

Turning down gene expression promotes nerve cell maintenance

February 2, 2009

Anyone with a sweet tooth knows that too much of a good thing can lead to negative consequences. The same can be said about the signals that help maintain nerve cells, as demonstrated in a new study of myelin, a protein ...

Recommended for you

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

Quantum Theory May Explain Wishful Thinking

April 14, 2009

(PhysOrg.com) -- Humans don’t always make the most rational decisions. As studies have shown, even when logic and reasoning point in one direction, sometimes we chose the opposite route, motivated by personal bias or simply ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.