We owe it all to comets

April 28, 2009
This is TAU's unique comet-ice simulator. Credit: AFTAU

Comets have always fascinated us. A mysterious appearance could symbolize God's displeasure or mean a sure failure in battle, at least for one side. Now Tel Aviv University justifies our fascination -- comets might have provided the elements for the emergence of life on our planet.

While investigating the chemical make-up of comets, Prof. Akiva Bar-Nun of the Department of Geophysics and Planetary Sciences at Tel Aviv University found they were the source of missing ingredients needed for life in Earth's ancient primordial soup. "When comets slammed into the through the atmosphere about four billion years ago, they delivered a payload of organic materials to the young Earth, adding materials that combined with Earth's own large reservoir of organics and led to the emergence of life," says Prof. Bar-Nun.

It was the chemical composition of comets, Prof. Bar-Nun believes, that allowed them to kickstart life. He has published his theory widely in scientific journals, including the journal Icarus.

A Pinch of Argon, A Dash of Xenon

Using a one-of-a-kind machine built at Tel Aviv University, researchers were able to simulate ice, and found that comets contain ingredients necessary for providing the basic nutrients of life.

Specifically, Prof. Bar-Nun looked at the noble gases Argon, Krypton and Xenon, because they do not interact with any other elements and are not destroyed by Earth's oxygen. These elements have maintained stable proportions in the Earth's atmosphere throughout the lifetime of the planet, he explains.

"Now if we look at these elements in the atmosphere of the Earth and in meteorites, we see that neither is identical to the ratio in the sun's composition. Moreover, the ratios in the atmosphere are vastly different than the ratios in meteorites which make up the bulk of the Earth. So we need another source of noble gases which, when added to these meteorites or asteroid influx, could change the ratio. And this came from comets."

Solving the Otherworldly Puzzle

Comets are essentially large chunks of ice, whose temperature ranges from -200 to -250 degrees centigrade. Formed in the early days of the solar system far away from the sun, water vapor condensed directly into ice, making little grains. These grains came together to form the comets, which are less than 2/3 of a mile in diameter, explains Prof. Bar-Nun.

During the comets' formation, the porous ice trapped gases and organic chemicals that were present in outer space. "The pattern of trapping of noble gases in the ice gives a certain ratio of Argon to Krypton to Xenon, and this ratio ― together with the ratio of gases that come from rocky bodies ― gives us the ratio that we observe in the atmosphere of the Earth."

Thus, the arrival on Earth of comets and asteroids led to the necessary ratio of materials for organic life, "which eventually were dissolved in the ocean and started the long process leading to the emergence of life on Earth," says Prof. Bar-Nun.

Asteroid Showers and Thunderstorms

The story started between 4.6 and 3.8 billion years ago, when both the moon and the Earth were bombarded by a flux of asteroids and comets. "On the Earth, most of the craters were obliterated by continental movement and by weathering winds and water erosion. On the moon, they remained as they were," says Prof. Bar-Nun, who adds that no life could thrive during this period of bombardment.

But the Earth recovered, and three to four hundred million years later, fragile forms of life emerged after the comet-delivered elements precipitated into the ocean. "There was another chemical development of these molecules in water, which became more and more complex," says Prof. Bar-Nun, leading to the origin of life on Earth.

Source: Tel Aviv University (news : web)

Explore further: The Makeup of Comets

Related Stories

The Makeup of Comets

August 9, 2004

A new method for looking at the composition of comets using ground-based telescopes has been developed by chemists at UC Davis. Remnants from the formation of our solar system, the makeup of comets gives clues about how the ...

Comet Collision 'Armageddon' Unlikely

September 12, 2005

The chances of the Earth being hit by a comet from beyond Pluto - a la Armageddon - are much lower than previously thought, according to new research by an ANU astronomer.

Recommended for you

Dense star clusters shown to be binary black hole factories

July 29, 2015

The coalescence of two black holes—a very violent and exotic event—is one of the most sought-after observations of modern astronomy. But, as these mergers emit no light of any kind, finding such elusive events has been ...

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.