The Chatter of Neurons (w/Video)

April 27, 2009

( -- Close your eyes. Extend your arms and let your fingertips explore your surroundings. What textures and shapes do you feel? What can you infer about your immediate environment simply through touch?

Just as your hands glide over surfaces, animals' whiskers collect sensory information from the world around them. When an animal twitches its whiskers, it not only gathers input, but also adjusts its whiskers as a function of that data.

Humans like other animals behave in a dynamic way to survive -- we are constantly modulating our behavior based on changing stimuli so we can act appropriately.

Fascinated by how animals construct internal pictures of their environments, Tansu Celikel, assistant professor of biological sciences, and his fellow researchers in USC College are investigating how sensory interactions occur and are encoded in the brain.

Celikel's lab focuses on the sensory cortex or the region of the brain that receives information from touch receptors. By mapping the neural activity induced by rodent whisker behavior, they hope to understand how the brain collects and organizes sensory input.

While others in the field of neurobiology have studied how function individually, Celikel is elevating the research to a new level by examining how groups of neurons in the sensory cortex talk to each other and ultimately adapt. Using an electrode array, Celikel is able to simultaneously record many neurons and better capture what an entire population is doing rather than going from one neuron to the next and making inferences about behavior.

"Studying a single neuron's activity to understand how the brain functions is similar to looking at a single shopper in a grocery store and trying to understand the state of the U.S. economy based on how much a single person spends on a given shopping trip," Celikel explained. "Although we can study the plasticity or adaptability of individual neurons, studying neural activity one neuron at a time results in lost information about how the brain functions."

By identifying which cellular processes and regions are affected when neurons reorganize in the face of a changing environment, Celikel's research has many practical implications. For example, the nervous systems of amputees undergo dramatic changes such as phantom limb pain and the inability to integrate artificial limbs with the rest of the body. Celikel believes scientists could control these reactions and thereby allow for artificial limb integration, among other benefits, by finding which regions and mechanisms are involved in the brain's reorganization.

The opportunity to have such an impact is exactly what attracted 2nd year neuroscience doctoral student David Herman to USC College.

"Working in Tansu's lab is cool because we are trying to answer a very important question, 'how does a brain change?,'" Herman said. "This complex question requires a variety of approaches, so we develop skills in a number of fields, including cellular biology, robotics and computational modeling. By combining knowledge from multiple fields we hope to understand how sensory information is represented in the cortex and how this information changes as the environment and/or the body changes (e.g. amputee). Ultimately, we hope to understand the neurobiology behind diseases states and injury so that we can better treat these conditions."

Many USC College undergrads are equally intrigued by the intricacies of the brain. Since its inception as a major four years ago, neuroscience has become the College's fastest growing major.

According to Celikel, understanding the human brain is one of science's last frontiers, so it's no surprise students are drawn to the field.

"We are living in the neuroscience era," Celikel said. "Without an understanding of the human brain, we will never understand how we exist as people and as social animals. With so many unknowns, neuroscience is a very exciting field because whatever you do, whatever novel approach you take, every novel question you ask, will contribute to the overall knowledge about how humanity exists."

Celikel and his group find they thrive in the field because it integrates so many different branches of the sciences. With neurobiologists, molecular biologists, experimental psychologists and physicists among their ranks, they all strive to understand how the processes sensory input -- how humans become human.

Provided by University of Southern California (news : web)

Explore further: Turning Sensation into Perception

Related Stories

Turning Sensation into Perception

November 6, 2005

Perceiving a simple touch may depend as much on memory, attention, and expectation as on the stimulus itself, according to new research from Howard Hughes Medical Institute (HHMI) international research scholar Ranulfo Romo ...

Picower research finds unexpected activity in visual cortex

March 16, 2006

For years, neural activity in the brain's visual cortex was thought to have only one job: to create visual perceptions. A new study by researchers at MIT's Picower Institute for Learning and Memory shows that visual cortical ...

Research shows how sensory-deprived brain compensates

April 17, 2007

Whiskers provide a mouse with essential information to negotiate a burrow or detect movement that could signal a predator's presence. These stiff hairs relay sensory input to the brain, which shapes neuronal activity. In ...

Sound adds speed to visual perception

August 12, 2008

The traditional view of individual brain areas involved in perception of different sensory stimuli—i.e., one brain region involved in hearing and another involved in seeing—has been thrown into doubt in recent years. ...

Without glial cells, animals lose their senses

October 30, 2008

( -- Sensory neurons have always put on a good show. But now, it turns out, they'll be sharing the credit. In groundbreaking research to appear in the October 31 issue of Science, Rockefeller University scientists ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Cow embryos reveal new type of chromosome chimera

May 27, 2016

I've often wondered what happens between the time an egg is fertilized and the time the ball of cells that it becomes nestles into the uterine lining. It's a period that we know very little about, a black box of developmental ...

Shaving time to test antidotes for nerve agents

February 29, 2016

Imagine you wanted to know how much energy it took to bike up a mountain, but couldn't finish the ride to the peak yourself. So, to get the total energy required, you and a team of friends strap energy meters to your bikes ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.