Brain mechanisms for behavioral flexibility

April 15, 2009
Modern human brain
Modern human brain. Credit: Univ. of Wisconsin-Madison Brain Collection.

New research provides insight into how the brain can execute different actions in response to the same stimulus. The study, published by Cell Press in the April 16 issue of the journal Neuron, suggests that information from single brain cells cannot be interpreted differently within a short time period, a finding that is important for understanding both normal cognition and psychiatric disorders.

Humans exhibit incredible flexibility when it comes to adjusting to the demands of a particular task. For example, when the word "blue" is written in red ink, separate responses to the color or the meaning of the word can be elicited. "Although the roles played by the in this kind of switching behavior have been well documented, little is known about how neural pathways governing sensory and motor associations accomplish such a switch," explains senior study author, Dr. Takanori Uka from the Juntendo University School of Medicine in Tokyo.

Dr. Uka and coauthor Dr. Ryo Sasaki investigated where and how identical sensory signals are converted into distinct motor signals. The researchers examined the responses of middle temporal (MT) neurons and the associations between MT neurons and downstream functions in monkeys as they switched between direction and depth discrimination tasks. Previous work has shown that the MT area is critical for both direction and depth discrimination.

The monkeys were trained to view dots on a screen and to indicate whether dots moved up or down when they saw the color magenta or whether the dots were nearer or father away when they saw the color cyan. "We found that neuronal sensitivities were nearly identical during both the direction and depth discrimination tasks; that is, depended on the visual stimulus and not the task itself," says Dr. Uka. This finding suggests that inputs to the MT area were not directly responsible for task switching.

Importantly, the researchers went on to show that signals from different MT populations were read out to perform different tasks. "We suggest that task switching is accomplished via the communication of distinct populations of MT neurons into a downstream decision system," explains Dr. Uka. "We hypothesize that single neurons probably cannot switch outputs in a short period of time, so the brain realizes behavioral flexibility by preparing separate pathways for each task through learning, and then chooses the appropriate pathways, rather than switching outputs, in a given trial."

Source: Cell Press (news : web)

Explore further: Turning Sensation into Perception

Related Stories

Turning Sensation into Perception

November 6, 2005

Perceiving a simple touch may depend as much on memory, attention, and expectation as on the stimulus itself, according to new research from Howard Hughes Medical Institute (HHMI) international research scholar Ranulfo Romo ...

Neural bottleneck found that thwarts multi-tasking

January 18, 2007

Many people think they can safely drive while talking on their cell phones. Vanderbilt neuroscientists Paul E. Dux and René Marois have found that when it comes to handling two things at once, your brain, while fast, isn't ...

Scientists identify brain circuits used in sensation of touch

October 10, 2007

The ability to tactually recognize fine spatial details, such as the raised dots used in braille, is especially important to those who are blind. With that in mind, a team of researchers has identified the neural circuitry ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.