Research team tests bedside monitoring of brain blood flow and metabolism in stroke victims

March 2, 2009

A University of Pennsylvania team has completed the first successful demonstration of a noninvasive optical device to monitor cerebral blood flow in patients with acute stroke, a leading cause of disability and death.

The ultimate goal of this research is to improve the management of patients with stroke and other brain disorders by providing continuous bedside monitoring of brain blood flow and metabolism.

"Our preliminary study demonstrates that blood flow changes can be reliably detected from stroke patients and also suggests that blood flow responses vary significantly from patient to patient," lead author Turgut Durduran said.

Ischemic stroke is the leading cause of morbidity and long-term disability in the United States, with projected cost of stroke care estimated at trillions of dollars during the next five decades. Stroke accounts for nearly 10 percent of deaths in the western hemisphere and about 5 percent of health-care costs.

The device being developed uses embedded optical probes that are placed over major cortical blood vessels in each hemisphere of the brain. The technology, diffuse correlation spectroscopy is a non-invasive system that uses lasers, photon-counting detectors, radio-frequency electronics, data processors and a computer monitor to display user-friendly images of functional information to physicians and nurses.

"What we have demonstrated is a working prototype of a non-invasive brain probe that uses diffusing light to detect physiological changes such as blood flow, blood-oxygen saturation and hemoglobin concentration to inform clinicians about their treatments," Arjun Yodh, professor of physics in the School of Arts and Sciences at Penn and principal investigator of the study, said.

The study is part of a $2.8 million, five-year Bioengineering Research Partnership grant from the National Institutes of Health and the University of Pennsylvania Comprehensive Neuroscience Center. BRP grants are awarded to interdisciplinary teams that combine basic, applied and translational research for important biological or medical problems. Yodh is joined by Rick Van Berg from the High Energy group of the Department of Physics in the School of Arts and Sciences and clinical collaborators John Detre, Joel Greenberg and Scott Kasner from the Department of Neurology in the School of Medicine at Penn.

"Stroke is caused by a reduction in blood flow to the brain, yet brain blood flow is rarely if ever measured in stroke patients because most existing methods to measure blood flow require costly instrumentation that is not portable," Detre said. "The ability to quantify tissue hemodynamics at the bedside would provide new opportunities both to learn more about blood-flow changes in patients with acute stroke and to optimize interventions to increase blood flow for individual patients, potentially even allowing these interventions to be administered before the onset of new neurological symptoms."

Source: University of Pennsylvania

Explore further: Power lines restrict sage grouse movement in Washington

Related Stories

Power lines restrict sage grouse movement in Washington

August 25, 2015

Transmission lines that funnel power from hydroelectric dams and wind turbines across Eastern Washington affect greater sage grouse habitat by isolating fragile populations and limiting movement, a new study finds.

New non-invasive skin cancer test put to the test

August 19, 2015

Researchers have developed a new non-invasive technique which can accurately detect malignant melanoma without a biopsy. The report, published online in Nature Scientific Reports on August 11, showed that a special technique ...

Supercomputers listen to the heart

August 19, 2015

New supercomputer models have come closer than ever to capturing the behavior of normal human heart valves and their replacements, according to recent studies by groups including scientists at the Institute for Computational ...

Capturing cell growth in 3-D

August 14, 2015

Replicating how cancer and other cells interact in the body is somewhat difficult in the lab. Biologists generally culture one cell type in plastic plates, which doesn't represent the dynamic cell interactions within living ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.