Strategy discovered for fighting persistent bacterial infections

March 23, 2009

Researchers at National Jewish Health have discovered a promising strategy for destroying the molecular scaffolding that can make Pseudomonas bacterial infections extremely difficult to treat in cystic fibrosis patients, wearers of contact lenses, and burn victims. Jerry Nick, MD, Associate Professor of Medicine at National Jewish Health, and his colleagues report in the April 2009 issue of The Journal of Medical Microbiology that a long string of aspartic acid molecules disrupts the molecular bonds that hold together the structure supporting Pseudomonas biofilms.

"Once a bacterial community forms a biofilm it becomes much more difficult to treat," said Dr. Nick. "We think our discovery will pave the way for more effective treatment of Pseudomonas aeruginosa infections, which can wreak so much havoc in cystic ."

Biofilms are a form of bacterial colony in which attach to and live within an , where medications and the immune system have difficulty reaching them. As a result, these infections become very difficult to treat effectively. Pseudomonas biofilms form and cause lung damage in most patients as they grow older. Pseudomonas biofilms can also form on the corneas of contact lens wearers, and in wounds and burns.

Dr. Nick and his colleagues previously showed that formation of Pseudomonas aeruginosa biofilms is enhanced by the remains of known as neutrophils, which accumulate in vast numbers to the site of infection, then die and spill their contents. Pseudomonas builds the extracellular matrix from neutrophils' DNA, the actin structural molecules, and histones, the molecules around which DNA normally wraps inside the cell nucleus.

DNase, an enzyme that breaks long strands of DNA, is already used to help thin the thick mucus that plagues cystic fibrosis patients. Dr. Nick believes it may also break up the Pseudomonas biofilms. But it is clearly not enough, because Pseudomonas biofilms remain one of the most vexing problems for cystic fibrosis patients as they age.

Dr. Nick and his colleagues thought that a negatively charged molecule might help break up the biofilms by bonding to the positively charged histones and preventing them from contributing to the molecular scaffolding, and by breaking apart actin bundles. So, they added aspartic , long strings of the negatively charged molecules, to cell cultures of Pseudomonas aeruginosa and neutrophils.

In one experiment, a 48-hour-old Pseudomonas biofilm was reduced by 42 percent when exposed to DNase for 10 minutes. The aspartic acid polymer alone could not reduce the density of the 48-hour-old biofilm. But when both DNase and the aspartic acid polymer were applied to the biofilm, it was reduced by 78 percent. Several other experiments with varying doses and exposure times of DNase and the aspartic acid polymer on different Pseudomonas strains and biofilms had similar results.

"The DNase and aspartic acid worked together synergistically to break down the biofilm," said Quinn Parks, PhD, lead author on the research paper. "We are now experimenting with different aspartic acid polymers to find the most effective ones. This may be an important new therapeutic strategy for combating Pseudomonas infections."

Source: National Jewish Medical and Research Center

Explore further: Gallium: A new antibacterial agent?

Related Stories

Gallium: A new antibacterial agent?

March 16, 2007

New antibacterial strategies are needed because more and more bacteria are antibiotic resistant and because antibiotics are not effective at eradicating chronic bacterial infections. One approach to developing new antibacterial ...

Research promising for cystic fibrosis

March 18, 2008

New University of Toronto research holds promise for developing innovative therapies against cystic fibrosis and may also serve as a model for future therapies against the HIV virus.

Finely tuned WspRs help bacteria beat body by building biofilm

March 25, 2008

Bacteria are particularly harmful to human health when they band together to form a biofilm—a sheet composed of many individual bacteria glued together—because this can allow them to escape from both antibiotics and the ...

Protein opens hope of treatment for cystic fibrosis patients

September 11, 2008

Scientists have finally identified a direct role for the missing protein that leaves cystic fibrosis patients open to attack from lung-damaging bacteria, the main reason most of them die before their 35th birthday, scientists ...

No hiding place for infecting bacteria

March 16, 2009

Scientists in Colorado have discovered a new approach to prevent bacterial infections from taking hold. Writing in the Journal of Medical Microbiology, Dr Quinn Parks and colleagues describe how they used enzymes against ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Cow embryos reveal new type of chromosome chimera

May 27, 2016

I've often wondered what happens between the time an egg is fertilized and the time the ball of cells that it becomes nestles into the uterine lining. It's a period that we know very little about, a black box of developmental ...

Shaving time to test antidotes for nerve agents

February 29, 2016

Imagine you wanted to know how much energy it took to bike up a mountain, but couldn't finish the ride to the peak yourself. So, to get the total energy required, you and a team of friends strap energy meters to your bikes ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.