Scientists determine 3D structure of proteins in living cells for the first time

Mar 05, 2009

(PhysOrg.com) -- A University of Glasgow scientist was part of a team of researchers which has, for the first time, been able to determine the three-dimensional structure of protein in living cells.

The discovery, published in the latest edition of Nature, means scientists can now prove correct previous assumptions about the structure of proteins and how they change due to mutations and interactions with each other, as well as helping to find ways of correcting damage.

From the 1950s until now, scientists have only been able to closely examine the structures of proteins in their extracted and purified form (in vitro) but these conditions are very different from those inside living cells (in vivo).

Using a nuclear magnetic resonance (NMR) spectrometer - a machine that allows the distances between the nuclei of atoms within a molecule to be measured - researchers were able to work out the three dimensional shape of an example protein called TTHA1718 which was being produced in living cells of the bacterium E.coli.

Doctor Brian Smith of the Division of Molecular and Cellular Biology at the University of Glasgow provided expertise that helped the Japanese-based and funded international team, led by Yutaka Ito at the Tokyo Metropolitan University, pursue this particular line of research.

Doctor Smith, a lecturer in biochemistry and cell biology, said: “Most proteins don’t exist in isolation; instead they exist in a very crowded environment inside cells where they interact with other molecules and, critically, a large of class of proteins don’t have a definite three-dimensional structure when you take them out of living cells.

“This new, relatively inexpensive method of using NMR spectroscopy means we can now establish the structure of proteins whilst still in live cells and will tell us much more about how they work, and how they change when mutated.

“Our results open new avenues for investigation of protein structures at atomic resolution and how they change in response to biological events in living environments.

“We’ll now try the technique with other, more interesting proteins, which are unstable when you take them out of cells. Ultimately, it could help us discover whether drugs to correct damaged or mutated proteins are working and find new methods of fixing them.”

Proteins are made up of long chains of amino-acids and play essential roles in all aspects of life from metabolism, through detecting and responding to stimuli, to the way organisms are put together. Mutated proteins are implicated in a whole range of illnesses, from cancer to the neurodegenerative condition Huntington’s Disease.

Dr Smith leads a group at the University of Glasgow which uses a 600MHz NMR spectrometer, with a cryogenically cooled probe, to study the structure and functions of proteins and nucleic acids involved in processes in a variety of systems.

More information: A paper on the research entitled, ‘Protein structure determination in living cells by in-cell NMR spectroscopy’, is published in the journal Nature.

Provided by University of Glasgow

Explore further: Understanding how cells follow electric fields

Related Stories

Nature inspires first artificial molecular pump

May 19, 2015

Using nature for inspiration, a team of Northwestern University scientists is the first to develop an entirely artificial molecular pump, in which molecules pump other molecules. This tiny machine is no small ...

Chameleon proteins make individual cells visible

May 19, 2015

Researchers discovered a new mechanism of how fluorescent proteins can change colour. It enables the microscopic visualization of individual cells in their three-dimensional environment in living organisms.

Recommended for you

Understanding how cells follow electric fields

3 hours ago

Many living things can respond to electric fields, either moving or using them to detect prey or enemies. Weak electric fields may be important growth and development, and in wound healing: it's known that ...

Protein scaffold

May 27, 2015

Right before a cell starts to divide to give birth to a daughter cell, its biochemical machinery unwinds the chromosomes and copies the millions of protein sequences comprising the cell's DNA, which is packaged ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.