200,000 rice mutants available worldwide for scientific investigation

March 4, 2009

Scientists across the world are building an extensive repository of genetically modified rice plants in the hope of understanding the function of the approximately 57,000 genes that make up the genome of Oryza sativa. The International Rice Functional Genomics Consortium recently announced the public availability of more than 200,000 rice mutant lines, which represent mutations in about half of the known functional genes mapped for rice to date.

Researchers have estimated the number of different rice mutants needed to have a mutant for every gene as somewhere between 180,698 and 460,000. Two hundred thousand rice mutants are now available and have been mapped by the insertion of what are known as flanking sequence tags - small pieces of DNA or molecular tags that integrate into the rice genome. This approach is useful because it allows scientists to link a physical location on the genome to a specific gene and its visible feature or phenotype.

Arjun Krishnan, first author on the paper and a graduate student in Andy Pereira's laboratory at the Virginia Bioinformatics Institute, stated: "Bioinformatics is making it possible to visualize the vast amounts of sequence information available to researchers. The resources described in this paper, which are the combined output of many leading international rice research laboratories, mean that researchers can see and explore on their computers the precise positions of mutations in the rice genome sequence, for each rice mutant plant. About 50 percent of the protein-coding genes have knockout mutations, which probably abolish their expression and can provide valuable information on the genes by virtue of their loss of function. This is a significant milestone for the project and the availability of these rice plants represents a powerful resource for the rice genomics community."

More than 2 million rice mutants were generated in this project and the diversity of the available plants suits many of the experimental objectives of researchers looking at rice and other commercially important grasses. Mapping of the remaining genes from this population will be required to complete the resource. Many of them will be smaller genes less amenable to mutation that will pose significant challenges for researchers as they continue their work.

Dr. Andy Pereira, Professor at the Virginia Bioinformatics Institute, stated: "The Oryza sativa genome was sequenced in 2002 and researchers have come a long way since. Advances in technologies such as high-throughput sequencing and RNA interference gene silencing methods should help to accelerate the process of identifying the functions of the remaining genes in the rice genome." He added: "The availability of the rice mutant resource is already helping researchers in their quest to gain insights into the biology of this commercially important crop. These efforts are critical to understand gene function and, ultimately, the many biological processes that take place in rice and other grasses, including maize and wheat, which collectively produce our staple food."

More information: Krishnan A, Guiderdoni E, An G, Hsing YI, Han CD, Lee MC, Yu SM, Upadhyaya N, Ramachandran S, Zhang Q, Sundaresan V, Hirochika H, Leung H, Pereira A (2009) Plant Physiology 149(1): 165-170.

Source: Virginia Tech

Explore further: Why a mutant rice called Big Grain1 yields such big grains

Related Stories

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

Unlocking the rice immune system

July 24, 2015

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team of researchers led by scientists with the U.S. Department of Energy ...

Bacteria use DNA replication to time key decision

July 9, 2015

In spore-forming bacteria, chromosomal locations of genes can couple the DNA replication cycle to critical, once-in-a-lifetime decisions about whether to reproduce or form spores. The new finding by Rice University bioengineers ...

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.