DNA repair mechanisms relocate in response to stress

March 26, 2009

Like doctors making house calls, some DNA repair enzymes can relocate to the part of the cell that needs their help, a collaborative team of scientists at Emory University School of Medicine has found.

The signal that prompts relocation is oxidative , an imbalance of cellular metabolism connected with several human diseases.

The study integrated the expertise of three Emory groups and resulted in a new level of understanding of the cell's response to genetic damage. The finding could lead to new targets for anti-cancer drugs that interfere with DNA repair, says Paul Doetsch, PhD, professor of biochemistry, radiation oncology, and hematology and oncology at Emory University School of Medicine.

The results were published in the February 1 issue of Molecular and Cellular Biology. The journal's editors chose an image of yeast with fluorescent DNA for the cover.

" and oxidative stress are very closely related," Doetsch says. "For example, the way radiation inflicts most of its damage on DNA is through oxidative stress. The more we know about how cells respond to oxidative stress, the more chances there could be to influence those responses for diagnostic or therapeutic purposes."

The DNA inside cells is continually under assault by heat, radiation and oxygen. Cells have an extensive set of repair enzymes that comb through DNA, continually excising and re-copying damaged segments. To complicate matters, mitochondria (cells' miniature power plants) have their own DNA.

Working with Doetsch, Emory graduate students Lyra Griffiths and Dan Swartzlander, and biochemists Anita Corbett and Keith Wilkinson, genetically modified strains of yeast so that two different DNA repair enzymes would be fluorescent. They were able to follow the enzymes around the cell when yeast was exposed to hydrogen peroxide, causing oxidative stress, or to other chemicals causing DNA damage.

One they studied, Ntg1, moves to the nucleus or the mitochondria depending on where DNA damage is concentrated, the authors found. In contrast, a related enzyme, Ntg2, stays in the nucleus under all conditions.

Cells appear to direct Ntg1's relocation by briefly attaching a small protein called SUMO to what needs to be moved around, the authors found. SUMO is found in fungi, plants and animals and is already being investigated by several research groups as a possible target for anti-cancer drugs.

Source: Emory University (news : web)

Explore further: Scientists identify specific enzymes that make meningitis hard to fight

Related Stories

New step in DNA damage response in neurons discovered

January 18, 2009

Researchers have identified a biochemical switch required for nerve cells to respond to DNA damage. The finding, scheduled for advance online publication in Nature Cell Biology, illuminates a connection between proteins involved ...

Recommended for you

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

New insights into the production of antibiotics by bacteria

July 31, 2015

Bacteria use antibiotics as a weapon and even produce more antibiotics if there are competing strains nearby. This is a fundamental insight that can help find new antibiotics. Leiden scientists Daniel Rozen and Gilles van ...

Out of the lamplight

July 31, 2015

The human body is governed by complex biochemical circuits. Chemical inputs spur chain reactions that generate new outputs. Understanding how these circuits work—how their components interact to enable life—is critical ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.