Researchers create catalysts for use in hydrogen storage materials

March 24, 2009

A team of scientists from Virginia Commonwealth University, the University of Uppsala in Sweden, and the Savannah River National Laboratory have identified that carbon nanostructures can be used as catalysts to store and release hydrogen, a finding that may point researchers toward developing the right material for hydrogen storage for use in cars.

Scientific findings indicate that hydrogen has all the makings of an ideal alternative fuel because it is clean, renewable and abundant, but there are challenges to safely and efficiently store it.

"Currently there are no materials that meet industry requirements. Our work paves the way to design and synthesize new and improved catalysts for the dehydrogenation of complex hydrides, taking us one step closer to finding the right material for hydrogen storage," said Puru Jena, Ph.D., distinguished professor in the VCU Department of Physics.

According to Jena, complex hydrides are a class of materials that have shown promise for the storage of hydrogen. Because complex hydrides are not reversible and removing hydrogen from them is difficult at temperatures less than 100°C, catalysts are needed to improve the reaction rates. However, previous studies indicate that the addition of catalysts creates defects in the hydrides.

The experimental group led by Ragaiy Zidan, Ph.D., a researcher at the Savannah National Laboratory, developed a solvent technique which allowed the introduction of carbon fullerenes and without introducing any defects and also functioned as catalysts. Jena and the team at the University of Uppsala led by Rajeev Ahuja, Ph.D., performed to illustrate the mechanism of how these catalysts work.

More information: The study appears online and in the journal . Article abstract -- http://pubs.acs.org/doi/abs/10.1021/nl803498e

Source: Virginia Commonwealth University

Explore further: Improved Ion Mobility Is Key to New Hydrogen Storage Compound

Related Stories

Recommended for you

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.