Beautiful Bugs in Blue: The Making of Luminous Bacteria

Mar 05, 2009

(PhysOrg.com) -- A team of Michigan Technological University researchers led by Associate Professor of Chemistry Haiying Liu has discovered how to make a strain of E. coli glow under fluorescent light. The technique could eventually be used to track down all sorts of pathogens and even help in the fight against breast cancer.

E. coli bacteria are naturally found in animal intestines and are usually harmless. But when virulent strains contaminate food, like spinach or peanuts, they can cause serious illness and even death.

The researchers' trick takes advantage of E. coli's affinity for the sugar mannose. Liu's team attached mannose molecules to specially engineered fluorescent polymers and stirred them into a container of water swimming with E. coli. Microscopic hairs on the bacteria, called pili, hooked onto the mannose molecules like Velcro, effectively coating the bacteria with the polymers.

Then the researchers shined white light onto E. coli colonies growing in the solution. The bugs lit up like blue fireflies. "They became very colorful and easy to see under a microscope," said Liu.

The technique could be adapted to identify a wide array of pathogens by mixing and matching from a library of different sugars and polymers that fluoresce different colors under different frequencies of light. If blue means E. coli, fuchsia could one day mean influenza.

With funding from a Small Business Innovation Research grant from the National Institutes of Health, Liu is adapting the technique to combat breast cancer. Instead of mannose, he plans to link the fluorescent polymers to a peptide that homes in on cancer cells.

Once introduced to the vascular system, the polymers would travel through the body and stick to tumor cells. Then, illuminated by a type of infrared light that shines through human tissue, the polymers would glow, providing a beacon to pinpoint the location of the malignant cells.

The technique would allow surgeons to easily identify and remove malignant cells while minimizing damage to healthy tissue.

More information: The team's work using polymers to detect E. coli was partially supported by the US Department of Agriculture and has been published in Chemistry--A European Journal. It is available at www3.interscience.wiley.com/journal/121637775/abstract .

The article, "Highly Water-Soluble Fluorescent Conjugated Fluorene-Based Glycopolymers with Poly(ethylene glycol) Tethered Spacers for Sensitive Detection of Escherichia coli, " is coauthored by Liu, postdoctoral associate Cuihua Xue, graduate students Singaravelu Velayudham and Steve Johnson, undergraduates Adrian Smith and Wilbel Brewer and Professor Pushpalatha Murthy, all of Michigan Tech's chemistry department; and graduate student Ratul Saha and Professor Susan T. Bagley of the biological sciences department.

Provided by Michigan Technological University

Explore further: Nearly indestructible virus yields tool to treat diseases

Related Stories

CLAIRE brings electron microscopy to soft materials

May 14, 2015

Soft matter encompasses a broad swath of materials, including liquids, polymers, gels, foam and - most importantly - biomolecules. At the heart of soft materials, governing their overall properties and capabilities, ...

Researchers develop new way to manufacture nanofibers

May 13, 2015

Researchers at the University of Georgia have developed an inexpensive way to manufacture extraordinarily thin polymer strings commonly known as nanofibers. These polymers can be made from natural materials ...

Exposing breast cancer using nanoscale polymers

May 13, 2015

Photoacoustic imaging is a ground-breaking technique for spotting tumors inside living cells with the help of light-absorbing compounds known as contrast agents. A*STAR researchers have now discovered a way ...

Quantum Criticality in life's proteins (Update)

Apr 15, 2015

(Phys.org)—Stuart Kauffman, from the University of Calgary, and several of his colleagues have recently published a paper on the Arxiv server titled 'Quantum Criticality at the Origins of Life'. The id ...

Recommended for you

Nearly indestructible virus yields tool to treat diseases

11 minutes ago

By unlocking the secrets of a bizarre virus that survives in nearly boiling acid, scientists at the University of Virginia School of Medicine have found a blueprint for battling human disease using DNA clad ...

DNA mutations get harder to hide

3 hours ago

Rice University researchers have developed a method to detect rare DNA mutations with an approach hundreds of times more powerful than current methods.

What happens inside a membrane

May 20, 2015

A new SISSA study has achieved two important results with a single effort: to devise an innovative method to analyse the structure of biological proteins immersed in their physiological context, and to closely ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.