Two-step chemical process turns raw biomass into biofuel

Feb 10, 2009 by Nicole Miller

(PhysOrg.com) -- Taking a chemical approach, researchers at the University of Wisconsin-Madison have developed a two-step method to convert the cellulose in raw biomass into a promising biofuel. The process, which is described in the Wednesday, Feb. 11 issue of the Journal of the American Chemical Society, is unprecedented in its use of untreated, inedible biomass as the starting material.

The key to the new process is the first step, in which cellulose is converted into the "platform" chemical 5-hydroxymethylfurfural (HMF), from which a variety of valuable commodity chemicals can be made. "Other groups have demonstrated some of the individual steps involved in converting biomass to HMF, starting with glucose or fructose," says Ronald Raines, a professor with appointments in the Department of Biochemistry and the Department of Chemistry. "What we did was show how to do the whole process in one step, starting with biomass itself."

Raines and graduate student Joseph Binder, a doctoral candidate in the chemistry department, developed a unique solvent system that makes this conversion possible. The special mix of solvents and additives, for which a patent is pending, has an extraordinary capacity to dissolve cellulose, the long chains of energy-rich sugar molecules found in plant material. Because cellulose is one of the most abundant organic substances on the planet, it is widely seen as a promising alternative to fossil fuels.

"This solvent system can dissolve cotton balls, which are pure cellulose," says Raines. "And it's a simple system-not corrosive, dangerous, expensive or stinky."

This approach simultaneously bypasses another vexing problem: lignin, the glue that holds plant cell walls together. Often described as intractable, lignin molecules act like a cage protecting the cellulose they surround. However, Raines and Binder used chemicals small enough to slip between the lignin molecules, where they work to dissolve the cellulose, cleave it into its component pieces and then convert those pieces into HMF.

In step two, Raines and Binder subsequently converted HMF into the promising biofuel 2,5-dimethylfuran (DMF). Taken together, the overall yield for this two-step biomass-to-biofuel process was 9 percent, meaning that 9 percent of the cellulose in their corn stover samples was ultimately converted into biofuel.

"The yield of DMF isn't fabulous yet, but that second step hasn't been optimized," says Raines, who is excited about DMF's prospects as a biofuel. DMF, he notes, has the same energy content as gasoline, doesn't mix with water and is compatible with the existing liquid transportation fuel infrastructure. It has already been used as a gasoline additive.

In addition to corn stover, Raines and Binder have tested their method using pine sawdust, and they're looking for more samples to try out. "Our process is so general I think we can make DMF or HMF out of any type of biomass," he says.

Provided by University of Wisconsin-Madison

Explore further: Engineer develops real-time listeria biosensor prototype

Related Stories

Crickets aren't the miracle source of protein

Apr 16, 2015

Crickets are not all that they're cracked up to be as an alternative, global source of protein in the human diet to supplement or replace livestock consumption, according to newly published research completed ...

Microbe produces ethanol from switchgrass without pretreatment

Apr 13, 2015

The conventional strategy for producing ethanol from plant biomass requires costly pretreatment and enzyme-driven reactions. Refining another strategy known as consolidated bioprocessing (CPB) could reduce costs. In second-generation ...

Recommended for you

DNA mutations get harder to hide

1 hour ago

Rice University researchers have developed a method to detect rare DNA mutations with an approach hundreds of times more powerful than current methods.

Use your smartphone for biosensing

3 hours ago

An Australian research team has shown that smartphones can be reconfigured as cost-effective, portable bioanalytical devices, with details reported in the latest edition of the Open Access Journal 'Sensors'.

Faster, portable microbial analysis in the field

May 25, 2015

Until recently, it took hours – sometimes days – to analyze biological samples after they were frozen in the field and brought back to the laboratory. But now there is a faster, cheaper and smaller way ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Feb 10, 2009

GOOD WORK!
SDMike
not rated yet Feb 11, 2009
Oh NO! This discovery will simply increase the western world's exploitation of nature and slow the inevitable return of man to his natural place - a cave.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.