Locations of strain, slip identified in major earthquake fault

February 15, 2009 by Jill Sakai
Two drilling engineers work with a section of the powerful drill aboard the Japanese drilling vessel Chikyu during a recent expedition off the coast of Japan. The drill, equipped with state-of-the-art technology, is capable of drilling boreholes into the ocean floor several miles deep. University of Wisconsin-Madison geologist Harold Tobin co-led an expedition from Sept. 21-Nov. 16, 2007, to study deep oceanic earthquake faults and the geophysical processes that cause earthquakes and tsunamis. Photo by: Harold Tobin

Deep-sea drilling into one of the most active earthquake zones on the planet is providing the first direct look at the geophysical fault properties underlying some of the world's largest earthquakes and tsunamis.

The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is the first geologic study of the underwater subduction zone faults that give rise to the massive earthquakes known to seismologists as mega-thrust earthquakes.

"The fundamental goal is to sample and monitor this major earthquake-generating zone in order to understand the basic mechanics of faulting, the basic physics and friction," says Harold Tobin, University of Wisconsin-Madison geologist and co-chief scientist of the project.

Tobin will present results from the first stage of the project Sunday, Feb. 15, at the 2009 American Association for the Advancement of Science meeting in Chicago.

Subduction zone faults extend miles below the seafloor and the active earthquake-producing regions — the seismogenic zones — are buried deep in the Earth's crust. The NanTroSEIZE project, an international collaboration overseen by the Integrated Ocean Drilling Program, is using cutting-edge deep-water drilling technology to reach these fault zones for the first time.

"If we want to understand the physics of how the faults really work, we have to go to those faults in the ocean," Tobin explains. "Scientific drilling is the main way we know anything at all about the geology of the two-thirds of the Earth that is submerged."

The decade-long project, to be completed in four stages, will use boreholes, rock samples, and long-term in situ monitoring of a fault in the Nankai Trough, an earthquake zone off the coast of Japan with a history of powerful temblors, to understand the basic fault properties that lead to earthquakes and tsunamis. The project is currently is its second year.

Subduction zone faults angle upward as one of the giant tectonic plates comprising Earth's surface slides below another. Tremendous friction between the plates builds until the system faults and the accumulated energy drives the upper plate forward, creating powerful seismic waves that make the crust shake and can produce a tsunami. But although both shallow and deep parts of the fault slip, only the deep regions produce earthquakes.

During the first stage of the project, the team found evidence of extensive rock deformation and a highly concentrated slip zone even in shallow regions that do not generate earthquakes. One rock core from a shallow part of the fault contains a narrow band of finely ground "rock flour" revealing a fault zone between the upper and lower plates that is only about two millimeters thick — roughly the thickness of a quarter.

Above deeper portions of the fault, the team discovered layers of displaced rock and evidence of prolonged seismic activity that suggest a region known as the megasplay fault is likely responsible for the largest tsunami-generating plate slips.

"A fundamental goal was to understand how the faults at depth connect up toward the Earth's surface, and we feel that we've discovered the fault zone that's the main culprit," Tobin says.

The next stage of drilling will commence this May, with plans to drill additional boreholes into the plate above deep regions of the fault zone. In addition to collecting cores for comparison to those from shallower parts of the fault, the scientists will install sensors in these holes to set up a deep-sea observatory monitoring physical stresses, movement, temperature and pressure.

Additional information about the first NanTroSEIZE expeditions is available at www.jamstec.go.jp/chikyu/eng/Expedition/NantroSEIZE/index.html .

Source: University of Wisconsin-Madison

Explore further: Megathrust quake faults weaker and less stressed than thought

Related Stories

Megathrust quake faults weaker and less stressed than thought

September 10, 2015

Some of the inner workings of Earth's subduction zones and their "megathrust" faults are revealed in a paper published today in the journal Science. U.S. Geological Survey scientist Jeanne Hardebeck calculated the frictional ...

The moon

September 21, 2015

Look up in the night sky. On a clear night, if you're lucky, you'll catch a glimpse of the moon shining in all it's glory. As Earth's only satellite, the moon has orbited our planet for over three and a half billion years. ...

With time ticking, quake warning system begins to take shape

September 11, 2015

University of Washington researchers are testing an earthquake alert system as the Pacific Northwest prepares for the day when a 600-mile-long fault line looming off the coast unleashes a catastrophic earthquake and tsunami.

Research calls for rethink of Alpine Fault

September 2, 2015

The major fault line, which runs almost the entire length of the South Island, has been assumed to be a near vertical crack. However, studies of seismic data have revealed the fault line becomes flatter at depth.

Ancient magma movements responsible for Gascoyne minerals

August 20, 2015

Geologists have used a technique developed at Curtin University to determine magmatic fluids came up from the earth's mantle repeatedly over the past 1600 million years, depositing minerals along a fault line in the Gascoyne ...

Recommended for you

Predictable ecosystems may be more fragile

October 7, 2015

When it comes to using our natural resources, human beings want to know what we're going to get. We expect clean water every time we turn on the tap; beaches free of algae and bacteria; and robust harvests of crops, fish ...

History shows more big wildfires likely as climate warms

October 5, 2015

The history of wildfires over the past 2,000 years in a northern Colorado mountain range indicates that large fires will continue to increase as a result of a warming climate, according to new study led by a University of ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.