Discovering the secret code behind photosynthesis

Feb 25, 2009

(PhysOrg.com) -- Scientists from Queen Mary, University of London have discovered that an ancient system of communication found in primitive bacteria, may also explain how plants and algae control the process of photosynthesis.

Two-component signal transduction systems (TCSTs) have long been recognised as the main way in which bacteria coordinate their responses to changes in their environment. But recent research has shown that these 'bacterial' two-component systems have also survived in plants and algae, as a way of sending signals within their cells.

These systems, which are thought to have evolved from ancient cyanobacteria, are found in chloroplasts - the part of a cell of a plant which conducts photosynthesis, converting light to chemical energy.

Writing in the Royal Society journal Proceedings of the Royal Society:B, Dr Sujith Puthiyaveetil and Professor John F Allen from Queen Mary's School of Biological and Chemical Sciences report that these two-component systems have played a fundamental role in linking the process of photosynthesis with gene expression, thereby determining the way that all plants adapt to changing environments.

Dr Puthiyaveetil explains: "We already know that two-component systems act as a type of on/off switch for genes in bacteria. But the survival of these bacterial-type on/off switches in chloroplasts suggests a new model for gene regulation in plants."

Professor Allen adds: "To many, it will be shock to learn that some messages are sent within plant cells - and, probably, animal cells - using the same telegraph system as the one found in 'primitive' bacteria. It would be like discovering Morse code in your computer network, or a wax cylinder at the heart of your new, shiny digital HiFi. To us, however, the discovery is exciting evidence for an unorthodox theory of cell evolution first published sixteen years ago in the Journal of Theoretical Biology."

More information: 'Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression‘, will be published in the online edition of Proceedings of the Royal Society:B on 25 February 2009.

Source: Queen Mary, University of London

Explore further: Mass deaths of rare Kazakhstan antelopes stir conservation fears

Related Stories

Study reveals how rivers regulate global carbon cycle

May 13, 2015

Humans concerned about climate change are working to find ways of capturing excess carbon dioxide (CO2) from the atmosphere and sequestering it in the Earth. But Nature has its own methods for the remova ...

Study reveals 'two faces' of phytoplankton

Apr 21, 2015

Phytoplankton, commonly known as plant plankton that remove carbon dioxide from the atmosphere through photosynthesis, are potentially a key driver of Arctic warming under greenhouse warming, a study reveals.

Recommended for you

Insect mating behavior has lessons for drones

19 hours ago

Male moths locate females by navigating along the latter's pheromone (odor) plume, often flying hundreds of meters to do so. Two strategies are involved to accomplish this: males must find the outer envelope ...

Bacterial tenants in fungal quarters

May 29, 2015

Ludwig Maximilian University of Munich researchers have sequenced the genome of a bacterial symbiont hosted by a mycorrhizal fungus. Analysis of the symbiont's genetic endowment reveals previously unknown ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.