Discovering the secret code behind photosynthesis

February 25, 2009

( -- Scientists from Queen Mary, University of London have discovered that an ancient system of communication found in primitive bacteria, may also explain how plants and algae control the process of photosynthesis.

Two-component signal transduction systems (TCSTs) have long been recognised as the main way in which bacteria coordinate their responses to changes in their environment. But recent research has shown that these 'bacterial' two-component systems have also survived in plants and algae, as a way of sending signals within their cells.

These systems, which are thought to have evolved from ancient cyanobacteria, are found in chloroplasts - the part of a cell of a plant which conducts photosynthesis, converting light to chemical energy.

Writing in the Royal Society journal Proceedings of the Royal Society:B, Dr Sujith Puthiyaveetil and Professor John F Allen from Queen Mary's School of Biological and Chemical Sciences report that these two-component systems have played a fundamental role in linking the process of photosynthesis with gene expression, thereby determining the way that all plants adapt to changing environments.

Dr Puthiyaveetil explains: "We already know that two-component systems act as a type of on/off switch for genes in bacteria. But the survival of these bacterial-type on/off switches in chloroplasts suggests a new model for gene regulation in plants."

Professor Allen adds: "To many, it will be shock to learn that some messages are sent within plant cells - and, probably, animal cells - using the same telegraph system as the one found in 'primitive' bacteria. It would be like discovering Morse code in your computer network, or a wax cylinder at the heart of your new, shiny digital HiFi. To us, however, the discovery is exciting evidence for an unorthodox theory of cell evolution first published sixteen years ago in the Journal of Theoretical Biology."

More information: 'Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression‘, will be published in the online edition of Proceedings of the Royal Society:B on 25 February 2009.

Source: Queen Mary, University of London

Explore further: New satellite to measure plant health

Related Stories

New satellite to measure plant health

November 20, 2015

ESA plans to track the health of the world's vegetation by detecting and measuring the faint glow that plants give off as they convert sunlight and the atmosphere's carbon dioxide into energy.

Team develops 'electronic plants'

November 20, 2015

Researchers at Linköping University in Sweden have created analog and digital electronics circuits inside living plants. The group at the Laboratory of Organic Electronics (LOE), under the leadership of Professor Magnus ...

Microbes map path toward renewable energy future

November 11, 2015

In the quest for renewable fuels, scientists are taking lessons from a humble bacterium that fills our oceans and covers moist surfaces the world over. While the organism captures light to make food in a process called photosynthesis, ...

Seagrass restoration paying off for eastern shore

October 30, 2015

Seagrasses are crucial to the health of shallow coastal marine environments, in Virginia and worldwide. Seagrass meadows provide habitat and serve as nursery and feeding grounds to a diverse range of sea creatures – crustaceans, ...

Recommended for you

Amazon deforestation leaps 16 percent in 2015

November 28, 2015

Illegal logging and clearing of Brazil's Amazon rainforest increased 16 percent in the last year, the government said, in a setback to the aim of stopping destruction of the world's greatest forest by 2030.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.